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Abstract. A Bayesian algorithm to retrieve profiles of cloud veloped. The retrieval algorithm is applied to data from the
ice water content (IWC), ice particle siz®e), and rela- Compact Scanning Submillimeter-wave Imaging Radiome-
tive humidity from millimeter-wave/submillimeter-wave ra- ter (CoSSIR) flown on the ER-2 aircraft during the Tropi-
diometers is presented. The first part of the algorithm pre-cal Composition, Cloud and Climate Coupling (TC4) exper-
pares an a priori file with cumulative distribution functions iment in 2007. Example retrievals with error bars are shown
(CDFs) and empirical orthogonal functions (EOFs) of pro- for nadir profiles of IWC,Dne, and relative humidity, and
files of temperature, relative humidity, three ice particle pa-nadir and conical scan swath retrievals of ice water path and
rameters (IWC,Dpe, distribution width), and two liquid averageDme. The ice cloud retrievals are evaluated by re-
cloud parameters. The a priori CDFs and EOFs are detrieving integrated 94 GHz backscattering from CoSSIR for
rived from CloudSat radar reflectivity profiles and associatedcomparison with the Cloud Radar System (CRS) flown on
ECMWF temperature and relative humidity profiles com- the same aircraft. The rms difference in integrated backscat-
bined with three cloud microphysical probability distribu- tering is around 3dB over a 30dB range. A comparison of
tions obtained from in situ cloud probes. The second part ofCoSSIR retrieved and CRS measured reflectivity shows that
the algorithm uses the CDF/EOF file to perform a BayesianCoSSIR has the ability to retrieve low-resolution ice cloud
retrieval with a hybrid technique that uses Monte Carlo in- profiles in the upper troposphere.
tegration (MCI) or, when too few MCI cases match the ob-
servations, uses optimization to maximize the posterior prob-
ability function. The very computationally intensive Markov
chain Monte Carlo (MCMC) method also may be chosenas dl Introduction
solution method. The radiative transfer model assumes mix-
tures of several shapes of randomly oriented ice particles, andihere is ongoing interest in remote sensing of ice clouds due
here random aggregates of spheres, dendrites, and hexade- their importance in radiative cloud feedbacks, precipita-
nal plates are used for tropical convection. A new physicaltion, and upper troposphere water cycling. A fundamental ice
model of stochastic dendritic snowflake aggregation is de-<cloud parameter is mass, such as ice water content (IWC) or
its vertical integral, ice water path (IWP), which is needed
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2278 K. F. Evans et al.: Ice cloud retrieval algorithm

to evaluate ice clouds in modern general circulation mod-parameter values and their inter-relationships before the mea-
els. There are several ice cloud mass remote sensing teclsurements are applied. An important example for ice clouds
nigues in use from satellites, including solar reflectance (e.g.is that we know from in situ measurements that characteris-
Rossow and Schifferl999 King et al, 1997, nadir view- tic particle size is negatively correlated with temperature and
ing microwave (e.g.Ferraro et al.2009, microwave limb  positively correlated with ice water content, and both IWC
sounding (e.g\Wu et al, 2006 Rydberg et a].2009, andthe  and particle size are positive and have a distribution that is
CloudSat radarStephens et gl2008 Austin et al, 2009. much closer to log-normal than normal. Bayes’ theorem says
All of these approaches to sensing ice cloud mass apply tehat the posterior pdf is proportional to the product of the
limited ranges of IWP, have limited spatial coverage, and/orprior pdf and the likelihood pdf, which is the conditional
have relatively low accuracy. In fact, comparisons of global probability of the measurement vector given a particular at-
ice mass datasets from these techniqis €t al, 2009 mospheric state. In the Bayesian framework the retrieved pa-
Eliasson et aJ.2011) generally show poor agreement. Ice rameter, say IWP, is not a single value, but a whole posterior
cloud mass can be obtained with higher accuracy from thesedf specifying a range of likely values. It is difficult to deal
satellite instruments using retrieval algorithms that combinewith a retrieved pdf for each pixel, so usually the posterior
instruments (e.gDelanoe and Hogar2010. pdf is summarized with its mean or mode and standard de-
High-frequency (150 GHz to 900 GHz) microwave (or viation (or other measure of its width). In cases of multiple
submillimeter-wave) radiometry is a developing technique modes in the posterior pdf, these summarizing quantities can
for remotely sensing ice cloud masaqsiewski1992 Evans  be quite misleading.
and Stephensl995h Evans et al.1998 2005 Buehler et One special case of a Bayesian retrieval methodology that
al., 2007). Scanning submillimeter radiometry has some ad-has become popular recently in ice cloud remote sensing
vantages over existing techniques in that it is fundamentallyis optimal estimation, usually in the framework developed
more sensitive to ice particle mass (and thus potentially havy Rodgers(2000. Examples of retrieval algorithms that
the best IWP accuracy) and has good spatial coverage fromse optimal estimation include the CloudSat IWC algorithm
low Earth orbit. (Austin et al, 2009 and combined radar, lidar, and infrared
Regardless of the technique, remote sensing ice cloudadiometer algorithmszhang and Mace2006 Delanoe and
mass is difficult because there are many confounding facHogan 2010. The optimal estimation framework Bfodgers
tors that affect the measured radiances or backscatterind2000 has also been used to explore the information con-
Depending on the technique, these factors include ice partent of various visible and infrared wavelengths for retrieving
ticle shape, particle size distribution, cloud height or temper-ice clouds Cooper et al.2006. Optimal estimation is sim-
ature, vertical variability in the cloud, absorption by water pler and often more efficient than the fully general Bayesian
vapor, attenuation by the cloud itself, effect of liquid cloud framework because it assumes that the prior and likelihood
in and below the ice cloud, and surface emissivity or re-pdfs are Gaussian and that the forward radiative transfer
flectivity. Some ice cloud sensing techniques have multiplefunction is only moderately nonlinear. By transforming to
wavelengths that give independent information to solve forlog variables, optimal estimation can also be used easily with
some of these factors, but all techniques require a priori indognormal distributions as was doneAwstin et al.(2009.
formation about many of these factors. The simpler retrievalUnfortunately, optimal estimation is sometimes poorly im-
algorithms fix any factor that cannot be retrieved, for exam-plemented in cloud remote sensing. The prior pdf covariance
ple, assuming a particular mixture of particle shapes, a fixednatrix is often assumed to be diagonal, ignoring the con-
size distribution for each effective radius, homogeneous icesiderable information contained in the known correlations
cloud, no underlying water clouds, and a specified surfacebetween variables. The prior pdf parameters are sometimes
albedo depending on surface type. Making these assumptiorchosen somewhat arbitrarily, rather than being obtained from
then allows forward radiative transfer modeling to be used toprior information contained in independent (e.g., in situ)
construct a lookup table that, for example, relates two ob-datasets. Since optimal estimation uses Gauss-Newton iter-
served radiances to water path and effective radius. Thesations with the nonlinear forward model in the loop, there is
fixed assumptions might be fairly arbitrary or based on care-a tendency to oversimplify the radiative transfer to speed the
ful analysis of in situ ice cloud data and other a priori sources.solution. Atmospheric parameters that ought to vary accord-
More sophisticated retrieval algorithms deal with the fact thating to a prior pdf (because they affect the observations) are
in the real atmosphere the confounding factors vary over cereften fixed to simplify and speed the solution. For these rea-
tain ranges and covary with each other. sons and because the forward function is not linear over the
The usual underlying framework for this approach is range of retrieval uncertainty, the retrieval errors from opti-
Bayes’ theorem and Bayesian probability concepts. In themal estimation are usually substantially underestimated.
Bayesian framework a priori information is specified with a  The more general Bayesian formulation has been used
probability density function (pdf). A Bayesian pdf specifies in some high-frequency microwave ice cloud retrieval al-
how likely the parameter is to have particular values. Thus,gorithms, usually with a Monte Carlo integration approach
a Bayesian prior pdf should specify realistic distributions of (Evans et al.2002 2005 Seo and Liy 2005 Rydberg et
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al.,, 2009. The Monte Carlo integration (MCI) method ran- (2008 used a cloud resolving model with several categories
domly generates atmosphere/cloud cases according to a priof ice particles to generate a database at frequencies from
probability density function and simulates instrument mea-24 to 875 GHz to retrieve precipitation rate and IWP.
surements for each case with a radiative transfer model to This paper describes a new Bayesian algorithm that re-
create a “retrieval database” of simulated observations andrieves ice cloud profiles and vertically integrated parame-
corresponding retrieval quantities. Since the cases in the reters. An overview of the retrieval algorithm is given in the
trieval database are already distributed according to the prionext section. Sectiorn3 and4 describe the algorithm in de-
pdf, Monte Carlo integration over the Bayesian posterior dis-tail. Examples of retrievals with CoSSIR data and validation
tribution is performed by weighting the retrieved quantities with CRS reflectivities are shown in Seét. Section6 dis-

in the database by the likelihood function. The likelihood cusses pros and cons of the retrieval algorithm, summarizes
function is usually assumed to be a Gaussian distributionthe results, and discusses future algorithm improvements.
which is negligible unless the observation vector matches

the simulated observation of the database case within the un-

certainties. The standard deviation of the retrieved quanti2 Overview of the retrieval algorithm

ties weighted by the likelihood function can give uncertainty

estimates. The algorithm retrieves ice water content, ice particle size,

The algorithm ofEvans et al(2002 2005 generated re- and relative humidity profiles, and vertically integrated cloud
trieval databases having discrete ice cloud layers with cloucgharameters from microwave radiances and/or radar reflec-
top altitude from a Gaussian distribution and cloud thicknesstivity profiles. The retrieval algorithm is tested with data
from an exponential distribution. The microphysical prop- from the Compact Scanning Submillimeter-wave Imaging
erties at the top and bottom of an ice cloud were obtainedRadiometer (CoSSIREvans et al. 2005 flown on the
stochastically from a pdf relating temperature, IWC, and me-NASA ER-2 aircraft in July and August 2007 during the
dian mass diameter derived from in situ cloud probe data-Tropical Composition, Cloud and Climate Coupling (TC4)
For each ice cloud, one of a few particle shapes was choseexperiment{oon et al,2010. CoSSIR measured brightness
randomly. Temperature and relative humidity profiles weretemperatures in 11 double sideband channels around 183.3,
generated stochastically using empirical orthogonal func-220.0, 380.2, 640.0 and 873.6 GHz. Data are used, mostly for
tions (EOFs) from statistics obtained from soundings. Thevalidation, from the nadir viewing 94 GHz Cloud Radar Sys-
Bayesian MCI method was used to retrieve IWP and mediartem (CRS) Li et al., 2004, also flown on the ER-2 during
mass diameter from the observations. TCA4.

Seo and Liu(2005 used EOF analysis to generalize A priori profile information is obtained from CloudSat
ground-based radar reflectivity profiles and used Z-IWC re-(Stephens et al.2008 project files of radar reflectivity,
lations to derive IWC profiles. Five different mixtures of six CALIPSO lidar cloud fraction, and ECMWEF profiles of tem-
particle shapes and gamma distribution parameters were chgerature and relative humidity. These profiles are combined
sen stochastically. Temperature and humidity profiles werewith cloud microphysical probability distributions derived
obtained by choosing from many radiosonde profiles. Afrom in situ cloud measurements that describe ice cloud pa-
database of 2.5 1P cases was thus generated and usedrameters, relative humidity, and liquid cloud parameters in
to retrieve IWP from the five AMSU-B channels (89, 150, ice clouds. The a priori information is transformed to cumu-
183.3+1,4+3,+ 7 GHz). lative distribution functions (CDFs) and empirical orthogo-

Rydberg et al(2009 generated three-dimensional (3-D) nal functions (EOFs) for temperature, relative humidity, and
fields of ice cloud parameters using CloudSat radar data exfive hydrometeor parameters at specified layers in the atmo-
panded to 3-D with a stochastic Fourier algorithvierfema  sphere. The CDFs capture the complete single-point statistics
et al, 2006 and a fixed ice particle size distribution parame- of the seven parameters, while the EOFs (from a type of rank
terization. Temperature and humidity profiles from ECMWF correlation matrix) capture some of the relationships in the
were stochastically modified to introduce small-scale vari-two-point statistics between different parameters and layers.
ability. A retrieval database was generated by simulating ra- This Bayesian algorithm uses a hybrid Monte Carlo inte-
diances for the Odin-SMR limb-sounder at 501 and 544 GHzgration and optimization approach to retrieve quantities with
from the 3-D fields, and Bayesian MCI was used to retrieveuncertainty estimates. The MCI method is highly efficient
IWC and relative humidity profiles. because the retrieval database is precomputed, and so the ra-

The MCI method uses a database and weighting by thaliative transfer does not have to be computed for each new
likelihood function to perform Bayesian retrievals. A related observation. MCI does not require the prior pdf to have a
technique uses an a priori retrieval database to train neurgbarticular functional form, such as the Gaussian distributions
networks to retrieve ice cloud parameters from brightnessassumed in optimal estimation. The biggest problem with
temperature vectors. Examples of high-frequency microwaveMCl is that, for a finite size retrieval database, increasing
retrievals of IWP using this neural network method include the length of the observation vector or making the obser-
Jimenez et al(2007) and Defer et al.(2008. Defer et al.  vation uncertainties smaller results in fewer database cases
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with a significant contribution to the Monte Carlo integrals. gradient information to maximize the posterior pdf. Prepa-
The hybrid approach developed here uses MCI, but, if notration of the microphysical pdfs from TC4 in situ data is
enough database cases match the observation, an optimizdescribed in Appendipd, and generation of the scattering
tion is performed to maximize the posterior pdf. While much tables for hexagonal plate aggregates, sphere aggregates, and
slower than MCI, the optimization minimizes a least squaressnowflake aggregates is discussed in AppeBdix

cost function (assuming a Gaussian likelihood function) us-
ing gradient information to be most efficient. There is also
an option to generate the Bayesian posterior distribution us

ing the Markov chain Monte Carlo (MCMC) method, though The CDF/EOF generation program uses data from several

this is only practical for testing purposes on a small number R : :
. R .~ sources to create the a priori information for the ice cloud
of observations. The optimization method and the generation

of a large number of retrieval database cases (e.§), fd0 retrieval system. The primary data source is CloudSat reflec-
ge . L A tivity profiles, CALIPSO lidar cloud fraction for the Cloud-
MCI requires using an explicit prior probability distribution

rather than using CloudSat profiles individually. Another ad- Sat range bins, and the corres',p.ondmg ECMWE profiles of
. S ooen T T temperature and relative humidity. The secondary sources
vantage of using an explicit prior probability distribution is

that there is some ability to extrapolate beyond the particular.0 fa priont |_nformat|o_n are param etgrs qf several probabil-
o ity distributions obtained from in situ aircraft probes that
radar profile input.

. . o . . . describe relationships between ice cloud parameters, liquid
Ice particle size distributions are defined using the parti- . - . .
cloud parameters, and relative humidity. Multiple profiles of

cle mass as expressed by the equivalent mass sphere dian]@\'/C/LWC Dme, and De dispersion for ice and liquid hy-
ter, De. The characteristic particle size is the IWC weighted drometeor,s a”r‘g’ gener:lted for each CloudSat radar profile
Lnye;}r;%; gir;(;é?sei(;l;l-dth of the size distribution is measured Radar reflectivity does not uniquely specify ice cloud micro-
’ physical parameters, of course, so radar reflectivity is com-
D — [ N (De) Dg DedDe bined with the ice particle microphysical statistics.
M~ " [N (De) D3dDe

[ N (D) D3 (De— Dne)? dDe |2 "
[ N (De) D§dDe )

3 Generation of the a priori CDF/EOF file

3.1 Inputs

Any number of CloudSat granules (GEOPROF, GEOPROF-
LIDAR, and ECMWF-AUX files of one orbit each) may be
Hydrometeor layers above the freezing level can contain icqnput, and those profiles in a selected latitude-longitude box
particles, specified by IW@)me, andDe dispersion, and lig-  are used. All columns in the designated region or only ones
uid cloud droplets, specified by liquid water content (LWC), deemed cloudy may be used. The altitudes of the layer in-
Dme, and a fixedDe dispersion. The ice particles are a mix- terfaces (also called levels) for analysis and output to the
ture of different shape categories, with the mixing fractions CDF/EOF file are specified. The ECMWF temperature and
varying in the retrieval database. Below the freezing level,relative humidity profiles are interpolated to the specified
a simple thermodynamical melting model (with no vertical |evels. Hydrometeors are allowed in a specified subset of
air motions) is used to calculate the melt fraction of the par-the layers, and the radar reflectivity and lidar cloud fraction
ticles (see Appendi®4). The a priori microphysics for the  are averaged/interpolated to each layer. CloudSat reflectivity
melting/melted particles is that of the ice particles at 273 K. within three range gates of the surface elevation is not used.
The profiles of IWC,Dme, and De dispersion describe the  parameters of three microphysical probability distribu-
ice particles above the freezing level and the melting/meltedions are input. The most important one is a Gaussian
particles below. distribution of 7, In(IWC), In(Dme), and De disper-

As the new ice cloud profile retrieval algorithm is de- sjon for ice particles (wherd is temperature). Parame-
scribed in more detail in the sections below, it will be use-ters are input for a Gaussian distribution Bf In (IWC),
ful to refer to the algorithm flowchart in Fid.. The profile In (LWC), In (Dme,liq) for Supercoo|ed cloud dr0p|ets (Where
retrieval system is divided into two separate Fortran 90 pro-\WC is the liquid water content of the droplets, and
grams. The first (described in Se8}.generates most of the Dmeyjiq iS the Dme of the liquid cloud droplets). Fi-
a priori information and outputs a file of cumulative distri- na||y, coefficients are input for the mean and standard
bution functions and combined EOFs for profiles of temper-deviation of a beta distribution of relative humidity in
ature, relative humidity, ice and melting particle IWOme,  the presence of ice particle§ & 273K). These coeffi-
De dispersion, and liquid cloud LWC antime. The second  cients are defined by Rigan=a +bT +cT2+d In (IWC)
program (described in Seel) uses the CDF/EOF file infor-  and RHyggev=¢+ f In (IWC). Appendix A describes the
mation to create atmosphere and hydrometeor profiles wittanalysis of in situ cloud probes from TC4 to generate
the desired a priori pdf, simulates the observations with ra-the a priori information input to the CDF/EOF generation
diative transfer, does Monte Carlo integration Bayesian reprogram.
trievals, and, when those fail, performs optimization with

1
Dedisp= D [
me
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Cumulative Distribution/EOF Generation Process P Ice Cloud and Humidity Retrieval

Scattering tables
k-distribution files

Make retrieval database
For each case:
1) Generate T/RH/hydrometeor profiles from
Gaussian random deviates using EOFs/CDFs.

CloudSat files:
profiles of reflectivity,
lidar cloud fraction,
and ECMWF T & RH

Microphysics pdfs:
ice particle p(T,IWC,Dme,disp)
liquid cloud p(T,IWC,LWC,Dme)
relative humidity p(RH;T,IWC)

94 GHz scattering tables

Interpolate profiles to T/RH levels
and hydrometeor layers

2) Calculate quantities to retrieve from profiles.
3) Perform radiative transfer to simulate instrument
- - - - - brightness temperatures and radar reflectivity.
Make table of ice/melting microphysics (IWC,Dme,disp,atten)
mean & covariance for each temperature and radar reflectivity cell  [<—
o Retrieval
| »| Simulate radar reflectivity below threshold in : H
lidar cloudy ice layers and make cloud mask \
i i H Monte Carlo Integration to retrieve
Generate stochastic hydrometeor profiles for each radar profile: mean and std. dev. over posterior pdf
1) Use reflectivity and temperature profiles with table to generate for each retrieved quantity
—> ice/melting IWC, Dme, disp & radar attenuation. I
2) Use IWC and T to generate liquid cloud LWC and Dme. N
3) Use T and IWC to adjust RH if IWC>threshold.
Too few

database cases
with 2 < threshold

Retrieved guantities
and error bars

!

Sort T, RH, ice IWC,Dme,disp, liquid LWC,Dme
for each level/layer to make CDFs

1

Calculate Gaussian rank covariance matrix
for columns with IWP>threshold
and make EOFs from covariance matrix

L__,| Optimization procedure:

1) Levenberg-Marquardt minimization of cost function
to find most probable state for retrieved quantities.

2) Sample optimal estimation Gaussian posterior pdf
for error bars.

CDFs for 7 variables at all levels/layers
and eigenvalues & EOFs

Fig. 1. Flowchart of the Bayesian ice cloud profile retrieval algorithm. Abbreviations ugédo't temperature, “RH” for relative humidity,
“IWC” for ice water content, “IWP” for ice water path, “LWC” for cloud liquid water content, “Dme” for mean IWC weighted equivalent
sphere diameter, “disp” foDe dispersion (a measure of the size distribution width), “atten” for radar attenuation, “CDF” for cumulative
distribution function, “EOF” for empirical orthogonal function, and “pdf” for probability density function.

Tables that specify the complete scattering information fortion of 7, In (IWC), In (Dye), De dispersion, random ice par-
randomly oriented particles at the 94 GHz CloudSat radatticle shape mixing fractions, and the appropriate scattering
frequency are used to relate the microphysical parameters ttable (depending off < 273K orT > 273 K). The eigenval-
radar reflectivity. These tables specify the scattering prop-ues and eigenvectors are calculated for thedcovariance
erties as a function oD, De dispersion, temperature, matrix in each reflectivity/temperature cell to be used later
and particle shape. There are scattering tables for the iceith the mean vector to stochastically simulate N\IQye,
particles, the melting/melted ice particles, and cloud liquid De dispersion, and radar attenuation consistent with the re-
droplets. See AppendiB for a description of the particle flectivity, temperature, and the ice microphysical pdf.
shapes used and how these scattering tables are generated.

3.3 Simulation of radar reflectivity below threshold
3.2 Generation of the ice microphysics table

Visual inspection shows that a CloudSat reflectivity threshold
The radar reflectivity and ice/melting particle microphysi- of —26 dBZ for 500-m-thick layers is required to nearly elim-
cal statistics are combined by generating a two-dimensionainate spurious cloud detections due to receiver noise. This
lookup table in reflectivity and temperature (e.qg., incrementsthreshold needs to be higher than the nominal CloudSat sen-
of 0.5dBZ and 2.0K, except 0.4 K in the melting zone). For sitivity of —30dBZ, because the probability distribution of
each reflectivity/temperature cell of the table, the mean vecthe receiver noise power has considerable width. Substantial
tor and covariance matrix of In (IWC), IfDme), De disper-  amounts of ice cloud in the tropics have radar reflectivity be-
sion, and In(A) (where A is the ice/melting particle radar low —26dBZ. A procedure is described in Appendixto
attenuation coefficient in dB knt) are calculated. This table simulate radar reflectivity for hydrometeor layers that are be-
is made with Monte Carlo sampling of the Gaussian distribu-low the radar threshold, but are known to be cloudy from the
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L ) A
-60 -50 -40 -30 -20 -10 0 10 20
Radar Reflectivity (dBZ)

Fig. 2. An example of the stochastic simulation of radar reflectivity for lidar identified cloudy layers with CloudSat reflectivity below
—26 dBZ. For each pair of radar profiles, the top strip use28 dBZ threshold without simulated reflectivity and the bottom strip includes

the simulated reflectivity. There are 1600 CloudSat columns from two separate orbits over the TC4 region. The layers in this example are all
0.5 km thick.

CALIPSO lidar cloud mask. This allows the prior pdf to have each hydrometeor profile, four independent stochastic pro-
lower values of IWC andnye than would be produced from files of zero mean/unit variance Gaussian deviates are gen-
the CloudSat reflectivity alone. An example of the radar re-erated having the same vertical correlations as the radar re-
flectivity profiles with and without the simulated reflectivity flectivity. These Gaussian profiles are used with the reflectiv-
is shown in Fig2. ity/temperature lookup table to stochastically generate IWC,
To prevent discontinuity in the CDFs, layers identified as Dme, De dispersion, and attenuation (dB k&) that agree

clear are set to very small, random reflectivity values that arewith the CloudSat reflectivity profile, have statistics consis-
correlated in the vertical. The correlation matrix for generat-tent with the a priori ice microphysics distribution, and are
ing these fictitious reflectivity values is calculated from the vertically correlated like the radar profile. If a particular re-
radar reflectivities above the noise threshold. The mean anélectivity is smaller than available in the lookup table, then
standard deviation of these stochastic reflectivities for cleam Rayleigh scattering extrapolation is performed. The mi-

layers are-80 dBZ and 1 dBZ, respectively. crophysical generation process proceeds from top down, so
that the generated radar attenuation (which is consistent with
3.4 Generation of stochastic hydrometeor profiles the hydrometeor parameters) can be applied to correct the

radar reflectivity profile. If the attenuation correction exceeds

The lookup table is used to generate several stochastic hy30dB, then the reflectivity is held constant for the rest of the
drometeor parameter profiles for each CloudSat reflectivityProfile. If the reflectivity below the melting level falls be-

profile. First, the CloudSat reflectivity profiles are corrected oW —20dBZ, then the rest of the profile is set to stochastic
for molecular attenuation with the absorption profile pro- €léar sky values. Thus, the radar-based hydrometeor genera-

vided in the GEOPROF fileMarchand et a).200§. For  tion process is only used for ice particles and melting/melted
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ice particles (i.e., rain) and not for cloud droplets, bound- Dnye in two layers) is represented by a single number, i.e.,
ary layer clouds or shallow convection. In deep convection,the correlation. To make the correlations more representative
multiple scattering increases CloudSat reflectivity above theof the important relationships for ice cloud retrievals, only
single scattering values assumed h&attaglia et al(2011) those profiles with IWP above a specified threshold (e.g.,
estimated that, in tropical deep convective cores, multiple1l0 g nm2) are used for the correlations. This is done by hav-
scattering becomes important 8 dBZ) below about 9km ing a second set of CDF®D); \wp- (x;), made from those
altitude. Since correcting for multiple scattering accurately profiles with IWP above the threshold. The ranks or prob-
is very difficult, we simply note that the effect is to over- abilities representing the profiles are converted to Gaussian
estimate the (single scattering) 94 GHz reflectivity when thedeviates using
reflectivity is high & 10 dBZz), thereby widening the a priori
IWC andéme d?strﬁ)utions. ) g ’ P & = ot [DiJWF’> (x,-)], @
Liquid cloud LWC andDme_for Iayer_s above the m_eltmg where ® (&) is the cumulative distribution function of the
level are generated stochastically using the Gaussian dlstr'étandard normal distribution. Gaussian distributions work

but|0r|1 ,'[n T, In (IWS), In (LY;]IC)’ |3(Dme,|iq)| W'th verttlc;al b tbest with EOFs, because linear combinations of indepen-
correlations according to the radar correlation matrix, bu dent Gaussian deviates remain Gaussian. The covariance ma-

with some thresholds applied. There is no supercooled IIq'trix for the EOFs is calculated from these Gaussian deviates.

uid cloud colder than a threshold temperature (e.g., 240K tcSince the Gaussian deviateshave zero mean and unit vari-
be consistent with the data used to generate the distribution)ance the covariance mairix is also the correlation matrix:

If the generated liquid cloud LWC is below 0.01 g then

it is set to zero, since the Bergeron-Findeisen process would Nprof -
tend to eliminate small LWC in the presence of ice crys-C;; = N Z Ei( )E](- ), 3)
tals. The cloud liquid water content aili,e below the melt- prof ;=1

ing level are linearly interpolated between that of the lowest
supercooled layer and the approximate lifting condensatio

level. . o . tors of the correlation matrix;;;, are the EOFs.

_ The relative humidity profile from the CloudSat ECMWF 16 oytnut CDF/EOF file contains the heights of the pro-
file is adjusted in the presence of significant ice water con-;a |evels and hydrometeor layers: the CDFs of temperature,
tent using the coefficients of the beta distribution mean andrelative humidity, IWC Dime, De dispersion, and liquid cloud

3 ) N , Ywc and Dme for each level or layer; and the Gaussian EOF
(now 0.001 g m®) before the relative humidity is adjusted. eigenvalues and eigenvectors.

Instead of choosing a beta deviate randomly, the “probabil-

ity” (0 to 1) of the ECMWEF relative humidity in its cumula- 3.6 Example CDFs and rank correlation matrix

tive distribution is translated to the beta deviate. Thus, a low

ECMWF humidity will result in a relative humidity from the A CDF/EOF file is produced from the 41 CloudSat orbits
low end of the beta distribution that depends on temperature¢hat have lidar cloud fraction and intersect the target region
and IWC. This procedure also results in the relative humid-of 4° N to 12° N and 90 W to 80° W (the TC4 Pacific Ocean

ity having reasonable vertical correlations. If there is nonzeroregion) in July and August 2007. A total of 32403 radar
cloud liquid water content in a layer, then the relative humid- columns (cloudy and clear) are used, with three stochastic

where the sum is over th¥por Stochastic profiles with IWP
"hbove the threshold for the correlation matrix. The eigenvec-

ity is set to 100 %. hydrometeor profiles generated for each radar column. Of
the 97 209 stochastic hydrometeor profiles, 46 191 have ice
3.5 Calculating CDFs and EOFs water path above 10gm™ and are used in the EOF cor-

relation matrix. The layer thickness in most of the ice re-
Cumulative distribution functiond); (x;), are made by sort- gion is 0.5km, with 0.2km resolution in the main melt-
ing (over all the stochastic hydrometeor profiles generatedng region. The cumulative distribution functions are output
from the radar profiles) the temperature and relative humidityat 201 points, and the 43 temperature/humidity levels and
for each profile level and the hydrometeor parameters (IWC 32 hydrometeor layers result in an EOF vector length of 246.
Dme, De dispersion and liquid cloud LWC anfdye) for each Figures3 to 5 show examples of the CDFs as profiles of
hydrometeor layer. At this point, the seven parameters foreach parameter for seven percentiles (0, 5, 25, 50, 75, 95,
each level/layer in the profiles (generically denotedxby  and 100) in the cumulative distributions. The dots on the
are represented by the probabilipy, or rank in the CDFs, median profile show the temperature/humidity levels or the
i.e., pi =D; (x;), wherei specifies both the parameter and hydrometeor layer centers. The temperature profiles show
the profile level/layer. the small range of temperature typical of the tropical tropo-
A type of rank correlation matrix is used to generate thesphere. The relative humidities have a large possible range
EOFs with the desired correlations. Thus, the joint prob-in the ice cloud region, though 50% are in a much smaller
ability distribution between two variables (e.g., IWC and range that generally decreases with height in the ice cloud
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region (about 5 to 15km). The a priori IWC profiles have A Priori Temperature Profiles A Priori Relative Humidity Profiles
a tremendous range from effectively clear 10> gm3) » 2 -

to about 10 g m3. Similarly, Dme ranges from below 15 pm ; o
to above 1500 um, though the maximubg,e generally de- 20 20|\ S

95%
— 100%

creases with height. The 95th percentile of IWC shows that
the highest IWCs are deep, ranging from the surface to about
14km. The highest layer cloud fraction (up to 45% for
0.5km layers) is in the anvil region from 10 to 14 km. In-
cluding the correlations between layers, the resulting cloud * 10
fraction is about 89 %. The peak layer liquid cloud fraction

is about 11 % near the melting level.

Figure 6 shows the correlation matrix used to make the
EOFs with each part of the matrix labeled by the parame- \
ters. Nearby Iayers of temperature, relative humidity, IWC, ® 200 20 240 200 280 300 %0 010203 04050607 08 09 10
and Dpe are highly correlated. IWC an®pe of the same Temperature (K9 Relative Humidly
layer have a reasonably high rank correlation. The fairly highrig_ 3 profiles of temperature and relative humidity from seven per-
correlation between relative humidity and IWC can be seencentiles in the a priori cumulative distribution functions.

Although there seems to be a lot of information in the cor-

relation matrix, and hence the EOFs, it should be noted that

there is only one number to represent the relationship be-

tween any two variables, which is a tiny fraction of the in- tion. These Gaussian distributed elements are converted to
formation contained in a joint probability distribution. It is, probabilities,p;, with uniform distributions between 0 and 1
however, the same amount of information contained in theusing the standard normal cumulative distribution function,
multi-variate Gaussian distribution assumed in the optimali.e., p; =® (&;). These correlated “probabilities” are then

i
@
i
@

Height (km)

o
o
N\

Height (km)

estimation method. used to index into the temperature, relative humidity, and
hydrometeor CDFs to produce the correlated profiles, i.e.,
xi =D (po).

4 Ice cloud/humidity profile retrieval process The relative humidities are converted to water vapor mix-

ing ratio ¢, since that is what the radiative transfer routines
The inputs to the retrieval program are (1) the CDF/EOF filerequire. This conversion requires the pressure profile, which
of a priori information, (2) a file of observation vectors (with is derived from the temperature profile using the hypsometric
measurement uncertainties and viewing directions), (3) a reequation. If the relative humidity profile is to be a retrieved
trieval database file, and (4) many parameters and files thaguantity, then desired levels are stored in the retrieval vector.
define the characteristics of the retrievals and measurements The hydrometeor profiles are IW@me, and De disper-
and provide data for the radiative transfer calculations. Thesion for the ice/melted particles, and the LWC abge for
retrieval program is run in one of two modes: (1) gener-cloud liquid droplets. If the layer temperature is below the
ate and output a retrieval database, or (2) read a retrievanelting temperature, the IWC aniole are used for the ice
database and perform retrievals. For each database “case”, garticle component, and, if the temperature is above the melt-
atmosphere/cloud profile is generated with the desired a priing temperature, the IWC anBme are used for the melt-
ori information from the CDF/EOF file information, and then ing/melted particle component. To preserve differentiability,
the radiative transfer is done to simulate the observations. this temperature threshold is implemented with a smooth ex-

ponential that quickly varies between 0 and 1. The liquid
4.1 Atmosphere profile generation cloud droplet LWC andDme are applied to the third com-

ponent, and thé, dispersion is set to 0.3. In the radiative
The atmosphere/cloud profile generation process begins wittransfer, each hydrometeor component (ice, melting, liquid
generating a vector of independent, standard Gaussian ramroplets) is associated with its own set of scattering tables
dom deviates§), most of which are used to drive the EOFs. (one for each frequency).
The number of EOFs used is user specified, and may be Another set of ¥jayer,shapet 1) Nshape Gaussian deviates
chosen, for example, to include 99 % of the variance. The(from &) is used to control the ice particle shape mixing frac-
Gaussian deviates are multiplied by the square root of theion of the Nshape possible shapes in the scattering tables
eigenvalues to make the random EOF coefficients, whichat Nayershape- 1 heights in the hydrometeor profiles. Test-
are then multiplied by the eigenvector matrix to give a long ing finds that linear interpolation over the whole ice region
vector of correlated Gaussian distributed elements. GaustNjayer,shape 1) gives an adequate number of degrees of free-
sian random deviates are used because the Gaussian distdem for particle shape. The Gaussian deviates are converted
bution shape is preserved upon the linear EOF transformato uniformly distributed deviates and linearly interpolated in
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Fig. 4. Profiles of IWC,Dme, and De dispersion from seven percentiles in the a priori cumulative distribution functions. Below the freezing
level, the profiles are applied to the melting/melted particles instead of the ice particles.
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. . Fig. 6. The Gaussian correlation matrix used to make the EOFs.
height to N, fractions at each hydrometeor layer. These
9 shape y Y Blue is a correlation of-1, white a correlation of 0, and red a cor-

fractions are then adjusted according to the laigfe SO : . .
L L . relation of 1. Each element of the matrix represents a pair of param-

tha_t the mlxmg_fractlo_n Is set to zerq for particle s_hapes foreters and layers, with increasing height of the levels/layers within

which the Dme is outside the range in the scattering tables gach parameter block. THeand RH levels from the surface up are

(and the shape mixing fractions sum to 1). Thus, the parti-shown as dots in Fig3, while the hydrometeor layer centers are

cle shape mixing fractions are not controlled by the a priori shown as dots in Figt.

CDF/EOF process, but are considered completely unknown

prior to the observations. There is, however, prior informa-

tion about the particle shape in that only certain shapes areetrieval vector. If desired, the IWC anbime profiles at a

available at a giverDng; for example, hail is only available  specified resolution are stored in the retrieval vector.

for Dme > 398 um.

Four vertically integrated quantities, IWP, averabge, 4.2 Radiative transfer

median IWP height Zmed), and melted liquid water path

(LWP), are calculated from the IWC anfdyne profiles and  The second part of making the retrieval database is the radia-

stored in the retrieval vector. The IWC weighted shape mix-tive transfer. Currently, the 1-D radiative transfer for passive

ing fractions and cloud droplet LWP are also stored in theradiometers is calculated with SHDOMPPDEJans 2007),
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though there could be options for other radiative transfer The MCI algorithm calculates the conditional pdf (or like-
models in the future. SHDOMPPDA was chosen because atihood function) in Bayes’ theorem, which is assumed to be
adjoint, which is needed for the optimization, was already de-an uncorrelated Gaussian distribution in the difference be-
veloped. It can perform unpolarized solar and thermal emistween the simulated and measured observations. Since the
sion radiative transfer for randomly oriented particles, anddatabase cases are distributed according to the a priori pdf,
is flexible in the trade-off between accuracy and computa-the conditional pdf is the same as the posterior pdf:
tional efficiency. The radiative transfer module also supports _ )
calculating radar reflectivity profiles and vertically integrated < 2) , Moo (yj(.s'm) - (.Obs)>
—5X X =

backscattering, which includes attenuation by gases and pappost < €Xp > d 4)
ticles, but not multiple scattering. A k-distribution system j=1 9

is used to calculate molecular absorption given the profiles (sim) (obs) ]

of temperature, pressure, water vapor and ozone mixing ravherey;”" and y;>" are the simulated and measured ob-
tio. The script for generating the k-distribution table for each Servations in channei with a combined measurement and
channel with LBLRTM Clough et al, 2005 includes the forward modeling uncertainty ef;. The retrieved quantities
spectral response of the channel. For CoSSIR and CRS @-9-, IWP) are the posterior pdf weighted means,

fourth-order Butterworth filter response is assumed for the 1 2

bandpasses, and, of course, only one “k” is needed for these 2 Wiexp (_2 Xi )

nearly monochromatic channels. The surface reflection isWret = l T o (5)
simply specified with the mean and standard deviation of the ; exp (_2 Xi )

stochastically varied Lambertian emissivity, which is either

completely correlated or uncorrelated between channels. Aand the retrieved uncertainty is the weighted standard devi-

few elements of the Gaussian deviate vedare used to  ation. There is an option to perform the integration in log

vary the surface emissivity. space for the cloud parameters (IWC abgle). The proba-
The single scattering properties are input with a scatter-bility of an ice cloud is retrieved from the ratio of the sum of

ing table for each channel. The scattering tables have the exhe posterior probability of cases using

tinction, single scattering albedo, and Legendre series of the

phase function tabulated as a function f,e, De disper- Z exp (-%X?) for IWP; > IWPg¢jear
sion, particle shape, and temperature. The temperature dgy o q = - (6)
pendence is needed in the microwave, especially for liquid > exp (—% X,-2>

i

water, but also for the weak absorption of ice. The range of

Dme tabulated varies with particle shape. The optical proper-if 4 particular measurement is flagged as bad, then the corre-
ties are interpolated in I(Dme), De dispersion, and temper- - spondings; is multiplied by 1000 to effectively ignore it. For
ature using successive cubic splines. The gradients of cubig cross-track scanning instrument, there are multiple viewing
spline interpolation are continuous, which is important for angles stored in the retrieval database and the simulated ob-
the gradient-based optimization calculation. A trilinear inter- servations are interpolated to the actual observation viewing
polation option is also available if optimization is not go- angle. If the number of database cases withy Afess than a
ing to be used. Interpolation is performed on log extinction, yser-specified threshold is below a specified number, then the
single scattering albedo, and the Legendre coefficients.  Monte Carlo integration is said to have failed, and the slower
optimization process is begun for that observation vector.
The control vector for the optimization is the indepen-
dent Gaussian deviate§)( not the geophysical variables
derived from them in making the atmosphere/cloud pro-
files. This is natural given the connection to the Monte

mtegr_atlon MCh) _(e.g.]_Eva_ns et al.2003_. Random atmq- Carlo integration retrieval method, and means that the atmo-
spheric/cloud profiles distributed according to the a priori pdf L s . .
sr[')_here/cloud/surface a priori information is contained in the

are generateq as despribed abovg: The retrieval database Cqunction that relates the geophysical variabbest6 the con-
tains the desired retrieved quantities (e.g., IWP, mbag, trol vector, i.e.x =G (). In data assimilation this approach

Zmed and perh‘f"ps IWQ)me and relative hum|d|ty profl'les) is called control variable transformatioBgnnistey 2008. If

and the associated simulated observations (e.g., brlghtne?ﬁ - o . :
o e radiative transfer function i8; (x), the posterior pdf is

temperature for each channel and a radar reflectivity pro- . L :

) S o . then maximized by minimizing the cost functios)(

file) for one or more viewing angles. Specified simulated

channels in the retrieval database may be treated as retrieved (obs)

. . Ndim Nchan (y — F; [G (g)])
parameters, so that one instrument may be used to retrieve _ Z £2 4 Z J J )
= : 5
i=1 j=1

observables of another for comparison. o

4.3 MCI and optimization retrieval methods

The primary and most efficient solution method used in the
ice cloud profile Bayesian retrieval algorithm is Monte Carlo

2
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The first term is the formal background or a priori from the optimization/local Gaussian approximation method. The
the independent Gaussian distribution of the state vector eleMCMC has been applied in atmospheric remote sensing for
mentsg;, while the second term is the observatiopdl This  several low-dimensional retrieval problems (emminen
assumes that the observational uncertainties combined witand Kyrolg 2002; Posselt et a]2008. Here a more advanced
the radiative transfer errors are Gaussian and independent ifstochastic approximation adaptive” MCMC approach, ba-
each channel. Internal to the retrieval program, the databassically Algorithm 4 in Andrieu and Thom$20032, is used.
stores the control vectorg§); and the optimization is initial- The MCMC method creates a Markov chain of control vec-
ized with thet of the case having the minimug?. tors &; that are distributed according to the Bayesian pos-
The advantage of having the cost function in the leastterior distribution, which here is exp-J/2). The Markov
squares form is that the robust and efficient Levenberg-chain is started at the optimization end poiéi), So it-
Marquardt minimization method may be used. The quadraticerations are not wasted finding the high probability region
form of the formal background term in the cost func- of the control vector space. The basic Metropolis algorithm
tion also means that the optimal estimation framework ofstep of MCMC is to calculate a trial control vector point in
Rodgers(2000 may be applied even though the real a pri- the Markov chain &) from the current point§;) using a
ori distribution (contained i (£)) is highly non-Gaussian. symmetric “proposal distribution” centered gn. The cost
The Levenberg-Marquardt formulation describe®Rimdgers  function, J (£tial), at the trial point is computed and com-
(2000 (Sect. 5.7) is implemented. This requires the Jacobiarpared to the current point cost functian(&;), by defining
of the forward functiorf [G (§)], or theK matrix in the no-  an acceptance ratia;
tation of Rodgers. Th& matrix is calculated using the ad-

joint of the radiative transfer for each channgl; (x)) and a = MIN {1, exp (—} [J Etia) — J (§,-)])}. 9)
the adjoint of the a priori functio (§) that calculates the 2
geophysical variables from the control vector. The trial point is accepte; 1 =£&yia, if @ uniform ran-

The optimization process to find the retrieval solution doesdom number is less than the acceptance ratio, and otherwise
not provide the uncertainties of the retrieval, as the Monteg, , , =¢; (the current point is reused). In adaptive MCMC
Carlo integration method does. Therefore, the local Gausthe proposal distribution is updated according to the history
sian approximation used in the optimal estimation frame-of the Markov chain, i.e., thg; vectors. As is usually done,
work (Rodgers 2000 is implemented to distribute points here the proposal distribution is taken to be a multivariate
around the solutionémin) in control vector space to char- Gaussian distribution with covariance mat#ix;, so that
acterize the retrieval uncertainty. The local Gaussian apg,, is sampled from\ (¢;, A; ;). The “stochastic approx-
proximation method computes the optimal estimation errorimation” part of the adaptive MCMC algorithm is that the
covariance matrix. This assumes that the forward functionmean (1«1) and covariance matrix{(i) of the control vectors
F[G ()] is only moderately non-linear, so that the lineariza- are continuously updated according to a relaxation parameter
tion and Gaussian distribution assumptions are valid. The opy that smoothly decreases to zero:
timal estimation posterior error covariance matrix is

it = pi + vit1 Eiva — pi)
S= (S;l + KTSy_.lK) ' (8) Zi+1=Xi +Vi+1 [(§i+1 — i) Eiv1— )" — Zi] -(10)

Since this updating formula is not guaranteed to keep the co-

whereK is the linearization matrix oF [G (§)], S, the ob- . . - L

servational error covariance matrix, assumed here to be diror o Ce matrix positive definite and the Cholesky decompo-
) 2 . ' L .~ sition of X is needed to generate the random trial points, ac-

agonal with elements ¢, andS; is the a priori error covari-

ance matrix, which here is the covarianceaind is thus the tually the Cholesky decomposition is updated. The Cholesky

identity matrix. The Cholesky decomposition ®fs used to updating formulain Sect. 5.1.1 8hdrieu and Thom¢2009

. . . ... _isincorrect, so an algorithm that is first-orderynwas de-
generate random points with a correlated Gaussian distribu-. - .
4 . . rived from the Cholesky decomposition algorithm. The pro-
tion aroundt min. Of course, we are not interested in the error

characterization in control vector space, so the random ointgosal distribution covariance scaling parameteis also up-
) pace, omp ated with a stochastic approximation formula:
in & are transformed to the atmosphere/cloud profiles and a

Monte Carlo integration is done over the retrieval quantities.x; 1 = A; exp[yi41 (@ — )], (11)

Since this step does not involve radiative transfer, a large

number of Monte Carlo samples (e.g., 1000) can be used ir$° that the mean acceptance ratio converges to the target
the integration. a4 =0.234. Here the relaxation paramegeis decreased ac-

cording to a power law in the iteration numherspecified
4.4 Markov chain Monte Carlo solution method by the power and final relaxation parameter value (though

is not allowed to exceed 0.01). After a “burn in” fraction of
The Markov chain Monte Carlo (MCMC) technique is devel- the total number of iterations, the proposal distribution up-
oped as an optional solution method to check the accuracy oflating is stopped and the MCMC points are used in a Monte
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CoSSIR nadir T, and retrieved cloud probability and IWP (19 July 2007) CoSSIR Retrieved Nadir IWP, Dy, and Z,,eq (19 July 2007)
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Fig. 7. CoSSIR brightness temperatures for four channels (topFig. 8. CoSSIR retrieved ice water path (top panéhye (middle
panel). Retrieved probability of ice cloud (middle panel). A dotted panel), and median IWP height (bottom panel) for cloudy nadir pix-
line at 0.95 probability is shown. Retrieved ice water path (bottomels of the 19 July flight. = error bars are shown for each retrieved
panel). quantity.

Carlo integration over the posterior distribution to calculate Retrievals are performed mostl ith CoSSIR nadir
the mean parameters for the retrievals and the standard de- etr \(/j ta obt P d 19 Julv f y \gIC SSIR channels
viations for the errors. In this application the number of it- Viewing data obtaine uly from N

erations must be very large-(10°) so that the MCMC so- (183.3+1.0, 3.0, 6.6, 220, 38021.8, 3.3, 6.2, 640V, and

lution method is impractical for use on whole datasets. Th6874GHZ)' The CoSSIR uncertaintiess), obtained from

MCMC method is, however, useful for comparison with the iaSI'g rgt'gg tzazgsetzflcl))Jé:tL;a:t)’lg n 4ségt:§'[;csiharg 1560’ 1'|62’ 1‘5’9’n
other solution methods for a small number of pixels. N S orthe = channels usedo

19 July. Retrievals from CoSSIR brightness temperatures are
also done for the same 9 channels on 17 July and for 6 chan-
5 Example retrieval results nels on 8 August (without the 380 GHz channels because the
380 GHz receiver failed). The CoSSIR uncertainties)(are
During TC4, CoSSIR measured brightness temperatures isomewhat different for these two other flights. The CoSSIR
channels around 183.3, 220.0, 380.2, 640.0 and 873.6 GHzhannels are used to directly retrieve 94 GHz radar reflectiv-
all with matched beamwidths of abouf.4The CoSSIR ity profiles. The profile retrieval algorithm is also used to op-
scanning pattern consisted of three parts during each 10erate on CRS reflectivity profiles alone or with CoSSIR nadir
scan: forward and aft conical scans and two quick crossdata. When CRS radar reflectivity is input to the retrieval, it
track scans through nadir. The beam dwell (integration) timeis averaged from 75m resolution to 500 m (20 layers from
is 100ms for the conical scans, but only 10ms for nadir5 to 15km) and has a multiplicative uncertainty of 0.4 (an
view, which results in about three times the receiver noiseestimated calibration uncertainty of about 1.5dB). The CRS
for nadir pixels. Due to hardware problems during the cam-radar additive uncertainty is calculated from a clear region,
paign, CoSSIR data from ice clouds are available only forand ranges from about 0.0028 fim—3 (—25.5dBZ) near
the 17 July, 19 July, and 8 August flights. The Cloud Radarthe surface to about 0.0003 rim—3 (—35dBZ) at 15 km.
System (CRS) is a Doppler, polarimetric radar, though only The retrievals are performed using the CDF/EOF file, for
the reflectivity profiles from the NASA Earth Science Project which results are shown in Se@&. The first 146 EOFs of
Office (ESPO) archive are used here. The CRS antennghe total of 246, which have 99 % of the variance, are used.
beamwidth is 0.6by 0.8 and views nadir. The CRS sensitiv- Monte Carlo integration retrievals are done with a retrieval
ity is —29 dBZe at 10 km range with 150 m range resolution database of f0cases. At least 25 cases with a redugéd
and 1 s averaging. less than 2 are required for a successful integration retrieval
(and no more than 1000 are used to reduce computation). The
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CoSSIR Retrieved Nadir IWP, shape fractions, and Xz (19 July 2007) CoSSIR Retrieved Nadir IWP, shape fractions, and XZ (29 July 2007)
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Fig. 9. Nadir retrievals of ice water path with error bars (top panel), Fig. 10.Nadir retrievals of ice water path with error bars (top panel),
shape mixing fractions (middle panel), and minimyr (bottom shape mixing fractions (middle panel), and minimurh (bottom
panel) for the retrieval with three particle shapes. The dotted line ajpanel) for the retrieval with four particle shapes.

x2 of 21.7 is the 99 % significance level for 9 channels.

SHDOMPPDA radiative transfer is done with four discrete
ordinates in zenith angle. The mean ocean surface emissiwld of 0.95 is chosen to indicate cloud. The retrieved ice wa-
ity is that of flat water (from the Fresnel formula) plus 0.06 ter path,Dme, and median IWP cloud height, all with error
to approximate ocean roughening, and the standard deviatiobars, for the cloudy pixels on 19 July are shown in Fg.
of surface emissivity is 0.03. The ice scattering tables usuallyOver the 568 cloudy pixels, the IWP ranges from 35¢tm
have four particle shapes (hexagonal plate aggregates, spheie about 11 000 g ¢ (1 to 99 percentiles), while th®me
aggregates or graupel, dendrite aggregates, and solid spheranges from 82 um to 665 um. The retrieved IWP error bars
cal hail), but some results are shown for retrievals with three(one sigma in In (IWP)) tend to be smaller for larger IWP
shapes (excluding the hail). See Appen8iXor the ratio- and range from 0.21 to 1.8. The high altitude cirrus around
nale and details about these particle shapes. Scattering tablés.2 h is retrieved due to the small brightness temperature
are also input for the melting/melted particles correspondingdepressions at 640 and 874 GHz, as no depression is seen at
to the ice particles, and for liquid cloud droplets. The rela- 220 GHz.
tive humidity profile from 1 to 15km and 21 layer profiles of ~ Figures9 and 10 compare retrievals for scattering tables
IWC and Dy are retrieved (from 4.5 to 15km). The cloud with three particle shapes and four shapes. Including solid
parameter retrievals are done in log-space, which means thate hail (4 shapes) substantially reduces the minimgm
the uncertainties are standard deviations of In (IWC) and(better agreement with the CoSSIR observations) in high
In (Dme) (translated into 1-sigma error ranges for the plots). IWP regions. Using four shapes also results in more con-
Except as noted, all retrievals below use the hybrid ap-sistent retrieved shape mixing fractions from 13.8 to 13.9h,
proach of Monte Carlo integration followed by cost func- where high hail fractions are retrieved. The four shape re-
tion optimization if too few database cases match the obrievals have smaller IWP in the high IWP regions than the
servations. Figur& shows selected CoSSIR nadir bright- three shape retrievals, presumably because solid ice spheres
ness temperatures, the retrieved probability of cloud, ancare more efficient at microwave scattering. Even with the
the ice water path. The correspondence between the brightddition of the “hail” particle shape, the high IWP regions
ness temperature depressions and the retrieved IWP is easi#fill have x2 that is too high. Perhaps further refinement of
seen. The retrieved probability of ice cloud is the Bayesianthe scattering particle shape models could improve the fit
cloud probability given the CoSSIR measurements, becaus® the CoSSIR data. Figurds and 12 show that the min-
the a priori data include all CloudSat profiles (clear andimum x? for two other flights seldom is greater than the
cloudy). Somewhat arbitrarily, a retrieved probability thresh- 99 % significance level. The? bursts on 8 August are almost
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CoSSIR nadir T, and retrieved IWP and Xz (17 July 2007) CoSSIR nadir Ty, and retrieved IWP and x (8 August 2007)
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Fig. 12. CoSSIR brightness temperatures from 8 August for four
fchannels (top panel). Retrieved ice water path with error bars of
cloudy plxels (middle panel). Mlnlmurxl (bottom panel); the dot-
ted line aty 2 of 16.8 is the 99 % significance level for 6 channels.

Fig. 11. CoSSIR brightness temperatures from 17 July for four
channels (top panel). Retrieved ice water path with error bars o
cloudy pixels (middle panel). Minimum? (bottom panel); the dot-
ted line aty 2 of 21.7 is the 99 % significance level for 9 channels.

all associated with obvious “noise” on the 874 GHz channeldoes indeed provide a more accurate IWP error than the lo-
(e.g., spikes at 874 GHz with no change at 640 GHz, thougttal Gaussian approximation, the Markov chain Monte Carlo
this is difficult to see in Figl2 without an expanded time (MCMC) method is used for 24 pixels. The MCMC solution
scale). method is run with 200000 iterations (MC points), a burn
Retrievals of ice water path and IWP error from Monte in fraction of 0.5, a final relaxation parameter of ?0and
Carlo integration (MCI) and the optimization/local Gaussian a relaxation parameter power of 0.3. The computer time for
method are compared in Fig3. The computer processing the MCMC method is 1720 s per pixel. Figutd shows the
time for these nadir pixels is 0.21s per pixel for the MCI comparison for the three solution methods. MCMC and MCI
method and 2.32s per pixel for the optimization method.retrievals of IWP usually agree very well, while for some pix-
There are only optimization points for the largest IWP pix- els the optimization is substantially different (though within
els where the MCI method does not have enough matchinghe error bars). For the In (IWP) errors, there is usually good
cases in the database for a retrieval. There are differencemgreement between MCI and MCMC and worse agreement
in the IWP retrievals between the two methods, but there iswith the local Gaussian approximation. The median absolute
good agreement except for clear pixels. In clear sky the opdifference in In (IWP) error for local Gaussian-MCl is 0.178,
timization sometimes retrieves an IWP of zero (not seen orfor local Gaussian-MCMC is 0.133, and for MCI-MCMC
the log scale) and sometimes retrieves a significantly nonis 0.043.
zero value. When optimization retrieves an IWP of zero, the Validation of the CoSSIR ice cloud retrievals is made
retrieved In (IWP) error is very large, but, when the method here by comparing 94 GHz vertically integrated backscat-
retrieves a larger IWP for clear sky, the In (IWP) error is be- tering and radar reflectivity profiles retrieved from CoSSIR
tween 0.5 and 2 (factors of 1.6 to 7.4 in IWP). There aredata with those from the Cloud Radar Systeim €t al.,
substantial differences between the local Gaussian approx2004. The 94 GHz backscattering from the CRS and CoS-
imation retrievals of In (IWP) error and the more reliable SIR retrievals is integrated from 5 to 15 km. The integrated
MCI retrievals. To quantify this, for the 249 pixels (out of backscattering has units of 8, but the MCI retrieval and
568 cloudy pixels) with MClI retrieved IWR 100 g nT2, the presentation are in dB (st). Figure 15 shows the inte-
difference in In (IWP) error (local Gaussian — MCI) has a grated backscattering comparison for the 19 July flight. The
mean of 0.044 and a standard deviation of 0.224. For comCoSSIR retrieved integrated backscattering agrees with that
parison the MCI In (IWP) error for these pixels has a meanfrom CRS consistent with the retrievedolerror bars, and
of 0.572 and a standard deviation of 0.277. To see if MClthere is little apparent bias. Figuié shows the integrated
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Comparison of IWP retrievals from MCI and optimization
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Fig. 14.1ce water path retrieved using Monte Carlo integration, op-

timization, and Markov chain Monte Carlo (top panel) for 24 se-

lected pixels (sorted in order of MCMC IWP). In (IWP) error re-  The ability of the algorithm to retrieve profiles is shown
trieved using MCI, local Gaussian approximation, and MCMC by comparing CoSSIR retrieved and CRS 94 GHz reflectiv-
methods (bottom panel). ity profiles in Fig.17. The CoSSIR MCl integration retrievals

are done in dBZ. There is clearly some ability of CoSSIR to

. . . . retrieve vertical profile information. The high altitude strong
kscatterin mparison for all three flights. Again, th

backscattering comparison for a ee Tghis. Again, eechoes around 13.55 and 13.72 h and the general shape of the

agreement is quite good over a factor of 1000 (30 dB). Theanvil echo between 13.75 and 13.95 h are seen in the CoSSIR

gt‘:rl:tlggarg?eg ﬁ;g;sséa?tlt%?fr?gsg O\t/)veaattﬁgltlelr; (;i ft?]ratr?fhgr%?_\t,_ trieved profiles. The lower altitude ice reflectivity structure
values. Tabldl gives statistics of the integrated backscatter- IS retrieved poorly,_whlch IS not surprising given _that wate_r
vapor blocks the higher-frequency channels seeing the mid-

ing comparison for all the cloudy pixels. The rms difference ) . . .
is around 3dB, and the linear correlation is between 0.94troposphere. The higher altitude structure is retrieved well by

and 0.96. The reduceg? shows that the CoSSIR retrieved CoSSIR when the reflectivity is high enough. More quanti-

error bars are reasonably correct, considering that errors i'{‘jvté\/:r:yggrstg:;flgt?févzg';ﬁjhggé trZ?ler(r:T':i?/ i?lﬁaesregijn?:z;)n
CRS reflectivity or the volume mismatch between the two Y

: of height. The CoSSIR retrieved and CRS reflectivity are av-
sensors are not included. - .
eraged (in linear space, not dBZ) to thicker layers, because
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CRS and CoSSIR Retrieved 94 GHz Reflectivity (19 July 2007)
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Fig. 17. A comparison of Cloud Radar System and CoSSIR retrieved 94 GHz radar reflectivity profiles for CoSSIR determined cloudy
columns. The Iz error range of the retrieved reflectivity profiles is shown with the images above and below the CoSSIR retrieved profiles.
In the difference plot at the bottom, pixels with CRS reflectivity below its noise level or non-cloudy CoSSIR retrievals are white.

RMS Difference between CoSSIR Retrieved and CRS Reflectivity Table 1. Statistics on the comparison of the Cloud Radar System
13 and CoSSIR retrieved vertically integrated 94 GHz backscattering.

“ ’ The four statistics are the rms difference (dB), the bias or mean
difference (dB), the reduceg? using the retrieved error bars, and
the linear correlation.

12

11

10

Sy Flight rms bias x2/N  corr
s 17Jduly 329 125 163 0.962
T, 19 July 2.70 0.80 1.55 0.962
. 8 August 3.02 —-0.19 0.89 0.944
O —— 1km layers, -5 dBZ CRS thredhold *‘
5 2 km layers, -5 dBZ CRS threshold
{) —— 4kmlayers, -5 dBZ CRS threshold
® — 1kml , +5 dBZ CRS threshold . . .
‘ 2k layers, +5 0B CRS threshold the CoSSIR retrieved profiles have coarse vertical resolu-
4 — 4kmlayers, +5 dBZ CRS threshold . . . . . ..
3. s ; . s TR tion. Since the comparison is made in dBZ, it is necessary
RMS difference (dB) to compare only those averaging layers with CRS reflectiv-

Fig. 18. RMS differences between CoSSIR retrieved and CRSIty above a threshold. Figurk8 shows the CoSSIR retrieval

94 GHz reflectivity as a function of height. The six curves are for error f(_)r.l km, 2km, and 4 km thick layers and for layer aver-

different averaging layer thickness and minimum CRS reflectivity 29€ minimum CRS reflectivity of5dBZ and +5dBZ. The

threshold. The marker is plotted at the center of each layer. CoSSIR retrieval accuracy improves with thicker layers and
larger CRS reflectivity thresholds. For 2 km layers with CRS
reflectivity above 5dBZ, the CoSSIR-CRS rms reflectivity
difference is about 2.0dB from 9 to 13 km, but increases to
between 5.3 and 6.5dB from 5 to 9 km.
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CoSSIR Retrieved IWC and D,,, Profiles (19 July 2007)
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Fig. 19.1ce water content anfdme profiles retrieved from nadir CoSSIR data. For each variable the middle time-height cross section is the
retrieval, and the upper and lower images show the one standard deviation error range.

Figuresl9to 21 show time-height images of retrieved pro-  Although CoSSIR is a scanning radiometer, the results
files of ice water content anBye from the Bayesian profile  shown to this point have been from the (noisier) nadir bright-
retrieval algorithm for inputs of CoSSIR alone, CRS alone, ness temperature data, which allow direct comparison with
and the combination of CoSSIR and CRS data. Consideringhe Cloud Radar System data and facilitate visualization of
the large difference between the passive CoSSIR and activeetrieved profiles. Figur@3 shows IWP andDe retrievals
CRS, the agreement is quite good, certainly within the er-for CoSSIR forward conical scans. The retrievals are visu-
ror range. The CoSSIR and CRS combined retrievals have alized by showing the CoSSIR beams as ellipses (1.25km
smaller error range, though the profiles are less continuous iy 1.75 km) projected at 5 km altitude in a latitude-longitude
time, which might be due to mismatched fields of view. map projection. Significant ice hydrometeor structure can be

Figure 22 shows time-height images of relative humidity seen across the swath width of about 36 km (at 5 km altitude)
retrievals and error range made with nadir CoSSIR data. Thalong the flight track over two convective systems. The IWP
relative humidity in deep ice cloud regions from about 3km and Dne maps have somewhat different patterns, showing
to 8km is usually exactly 1.0 when retrieved using the opti- that IWP andDp,e are partially independent.
mization (i.e., the most probable posterior value). Since the
retrieved error is symmetric, this leads to an unphysical upper
error range above 1.0. It is possible that the a priori relation6 Conclusions
ship between relative humidity and In (IWC) is too strong. __ . ) ] ) ] ) )
Outside of thick ice cloud, there is real humidity structure This article describes a Bayesian algorithm to retrieve ice wa-

retrieved with the CoSSIR 183 and 380 GHz channels. Not€F content, ice particle sizéne), and relative humidity pro-
validation of the relative humidity retrievals is shown. files from millimeter-wave and submillimeter-wave bright-
ness temperatures. The prior pdf of cumulative distribution

functions (CDFs) and EOFs for seven parameters and many
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CRS Retrieved IWC and D, Profiles (19 July 2007)
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Fig. 20.1ce water content anfdme profiles retrieved from nadir Cloud Radar System data.

layers is derived from the CloudSat radar reflectivity, lidar method, but supplements it with optimization when there are
cloud fraction and ECMWEF temperature and humidity pro- not enough MCI database cases to match the observations.
files combined with three cloud microphysical pdfs obtained A poor match to observations after optimization (high)
from in situ cloud probes. Retrievals from the Bayesian pos-indicates something is wrong with the observation vector
terior pdf are obtained with Monte Carlo integration (MCI) or with the a priori or radiative transfer model. The advan-
and, when there are too few matching database cases, optage of using CloudSat associated data for a major part of
mization to maximize the posterior pdf. Summaries of the al-the a priori information is that they provide rich information
gorithm are provided in Sec.and in the flowchart of Figl. on vertical ice cloud structure anywhere around the world.
Expressing the Bayesian prior pdf in terms of CDFs allowsBasing the microphysical pdfs on in situ data provides an
for arbitrary (non-Gaussian) distributions, while the EOFs objective method of introducing required additional a priori
provide crucial correlations between the temperature, humidinformation.
ity, and the five hydrometeor parameters at all levels in the A disadvantage of using cloud microphysical probability
profile. The explicit prior function allows the Monte Carlo distributions obtained from in situ data is that they must be
integration to be performed with any number of columns, prepared for each region/season and can suffer from limita-
and thus generalizes the information in the CloudSat columnsions of particular cloud probes and aircraft sampling. While
used to make the prior pdf. Formulating the a priori in- the CDFs contain the complete single point statistical infor-
formation in the forward function with the radiative trans- mation, the EOFs, which are based on a correlation matrix,
fer (through a control variable transform) allows the use of have only limited information about all higher-order statis-
the optimal estimation framework for a non-Gaussian prior.tics. Since this algorithm is primarily about retrieving ice hy-
The hybrid solution method uses the highly efficient MCI drometeors from high-frequency microwave radiometer data,
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CoSSIR & CRS Retrieved IWC and D,,, Profiles (19 July 2007)
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Fig. 21.1ce water content anfdme profiles retrieved from nadir CoSSIR and Cloud Radar System data.

it mostly ignores clouds below the melting level. There aresnowflake aggregates. A comparison of the MCI and op-
no boundary layer clouds, for example, though the CDF/EORimization methods showed that the retrieved IWP usually
framework includes profiles of liquid water content and parti- agreed well except for clear pixels. The agreement between
cle size, so low level clouds could be included. The ice parti-MCI and optimization for the retrieved In (IWP) error was
cle melting model described in Append®4 is very simpli- poorer, likely because the local Gaussian assumption used
fied in that it assumes no updrafts and ignores evaporatiorfor retrieving uncertainties with optimization was violated.
condensation, collection, and drop shedding. In addition, noThe Markov chain Monte Carlo retrievals for two dozen pix-
raindrop microphysical pdfs are used, since the melting parti-els agree significantly better with the MCI method than the
cle microphysics is based on the ice microphysics at the meltoptimization/local Gaussian approximation method.
ing level. The significant limitations of the radiative transfer  The ice particle retrieval results are validated by compar-
modeling are the common assumptions of randomly orientedng vertically integrated 94 GHz backscattering retrieved by
particles and one-dimensional transfer. CoSSIR with those measured by the Cloud Radar System on
Example retrieval results are mainly from CoSSIR datathe same ER-2 aircraft. On three flights the rms difference
obtained on 19 July 2007 during TC4. Nadir retrievals arebetween CoSSIR retrieved and CRS integrated backscatter-
shown of the probability of ice clouds, and (with error bars) ing for cloudy pixels is around 3 dB (over a 30 dB range) with
ice water path,Dme, and median IWP height. A compari- alinear correlation of about 0.95. The integrated backscatter-
son of the minimuny 2 and shape mixing fractions between ing agreement is consistent with the retrieved error bars and
retrievals including and excluding hail in the scattering ta- is better for larger values. A comparison is shown between
bles indicated that, in some convective regions, solid ice hailCoSSIR retrieved and CRS radar reflectivity profiles. The er-
was needed in addition to sphere aggregates (graupel) amr bars on the retrieved profiles are much larger than for the
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CoSSIR Retrieved Relative Humidity (19 July 2007)
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Fig. 22.Relative humidity profiles retrieved from nadir CoSSIR data from 1 to 15 km at 1 km resolution.

CoSSIR Forward Conical Scan lce Water Path (19 July 2007) vertical integral, of course, but there is clearly some ability
to retrieve profile information. Where the ice particle scatter-
ing signal is strong enough and at higher altitude® km),
CoSSIR retrieved reflectivity agrees well with the CRS re-
flectivity (rms differences< 3dBZ). Nadir retrievals of IWC
and D¢ using the Bayesian profile retrieval algorithm with
CoSSIR data alone, CRS data alone, and the combination of
CoSSIR and CRS data are shown for comparison. CoSSIR
retrievals of IWP andDne for the forward conical scan in
map view show interesting horizontal structure.

The ice cloud profile retrieval algorithm described here
could be extended in a number of ways in the future.
The code currently handles thermal emission and radar ob-
servables. No code changes are required to input infrared
radiances in addition to microwave brightness tempera-
tures, though particle scattering tables and K-distribution
files would be needed for the infrared channels. Since the
SHDOMPPDA model also performs solar radiative trans-
fer, only minor changes would be required for the addi-
tion of visible radiances. Including infrared and visible ra-
diances would likely require the addition of low-level liquid
- . cloud to the prior pdf. The CloudSat radar is not sensitive

log(Dme) (um) : enough to probe the full range of liquid clouds, but perhaps
ground-based cloud radars could be combined with micro-
Fig. 23.Ice water patt(a) and Dme (b) of cloudy pixels retrieved  physical information from in situ cloud probes. Including
from CoSSIR forward cosnical scans. The log color scale fo.r WP lower-frequency microwave radiances would require a more
Is from 20 to 20000 m®, while the log color scale foDme IS ¢4 rrect formulation of the a priori raindrop information and
from 30 to 1000 um. Only pixels with an ER-2 roll angieS . animproved surface emissivity model, as well as the addition

are used. The pixels are projected to 5km altitude. The longi- £l | | liquid clouds. A oriori inf fi bout "
tude range is 90°2W to 94.6 W, and the latitude range is from oflow-level iquid clouds. A priori information about verti-

6.8 N to 10.0 N. The retrievals are from 13.2 to 14.5h UTC on €@l rainstructure could be provided by lower-frequency satel-
19 July 2007. lite radars. One area of improvement even for high-frequency

microwave observations would be the inclusion of a priori
ice particle shape information if relevant parameters, such
as particle density, were available from in situ cloud probes.
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And finally, applying this retrieval algorithm to different ice Equivalent diameter vs area
cloud situations (e.g., wintertime synoptic systems) would 2. exaga ot .
require a different selection of ice particle shapes in the scat- - ol spiragalsph /,-‘
tering tables and different microphysical input parameters. £ sl P

% 0.2 .
Appendix A § 01 ' Nl

éo.os o 4
Analysis of TC4 in situ aircraft cloud microphysical data T /

‘5 0.02
The cloud microphysical probability distribution inputs to oo A
the ice cloud profile retrieval algorithm are derived from in 0.00510,5/ e =3 = e =5 -
situ data from instruments flown in TC4. The key probabil- Area (mm?)

ity distribution is the multi-variate Gaussian distribution re-
lating T (temperature), In (IWC), IiDme), and De disper-

sion for ice particles. The in situ ice particle size distribu- 2|1 eesgheria
tions are obtained from the two-dimensional stereo (2D-S) L gowees
probe that flew on the DC-8 and WB-57 aircraft and the pre-

cipitation imaging probe (PIP) that flew on the DC-8. The
2D-S probe has true 10 um pixel resolution with 128 pho-
todiode linear arrays and fast electronidsason et al.
2006. The 2D-S has horizontal and vertical channels, though
only the horizontal channel is used for the DC-8 probe and
the vertical channel for the WB-57 probe. The PIP probe
has 100 um pixels and 64 photodiodes, and is used to sam- .
ple larger ice particles. Data files for all the in situ instru- 005 E——- o m 5 : m
ments are obtained from the NASA Earth Science Project Average maximum diameter (mm)

(ESPO) Office archivehftp://espoarchive.nasa.gov/archive/

Equivalent diameter vs maximum diameter

1.0

0.5

0.2 N
4

Equivalent volume diameter (mm)
-

. . Fig. Al. The equivalent volume sphere diameter as a function of av-
browse/tc3. The 2D-S and PIP files are available for the erage projected area and average maximum diameter for randomly

1_1 DC-8 ﬂ'ghts’ and 2D-S flle§ are available for the 4 \.NB.'57 oriented particles used in the retrieval algorithm scattering tables.

flights. While the 2D-S data files tabulate the size distribu-The power-law fits used for the 2D-S probe (top panel) and PIP

tions up to a maximum dimension of around 3000 um, the(pottom panel) are also shown.

2D-S and PIP number concentration spectra usually agree

well for Dmax< 1000 um, but the 2D-S number concentra-

tion increasingly falls below the PIPs for larger sizes. So forwhich is close to the one that SPEC used to process the 2D-S

the DC-8, the 2D-S data are used < 1200pm and  data e =min{0.6214%4%, Dp..}). The power-law fit used

the PIP for 1206< Dmay < 10 000 um, while for the WB-57  for the PIP data isDe=0.299D%338. The sphere aggregate

only the 2D-S data are used (larger particles are very rare ashape has a substantially different curve from the other two

the WB-57 altitudes). The 1-s 2D-S samples are averaged tehapes in thde — Dmax Scatterplot, but it is not feasible in

5-s samples to match the PIP. the retrieval algorithm to have separate fits for each shape.
As discussed in Sec?, the size distributions used in the ~ The IWC, Dne, and De dispersion ¢p,/Dme) are calcu-

ice cloud retrieval algorithm are based on particle mass ofated for each size distribution from

equivalent sphere diameter defined By=[6m/(p; 7)]Y/3, _oiT

wherem is the particle mass ang; =0.917 gcm?® is the Mj 6 DgNj, IWC = Z Mj,

density of ice. The 2D-S and PIP probes measure shadow- ! )

graphs from which the maximum diameteday) and pro- S M D > M;Dg

jected area 4) are derived (the PIP files only havemax Dine = J—fe, 0[2) - J_  _ Dr’c;]e’ (A1)
number concentration spectra). For consistency, power-law %: M; ¢ %: M

relationships betwee®e and A (for the 2D-S) andDe and

Dmax (for the PIP) are obtained from three non-spherical icewhereN; is the number concentration in bjnand De is ob-
particle shapes used in the scattering calculations (see Apained either from the projected area,ax in bin j using
pendixB for details on these shapes). Figux# shows the  the power law relationships. The size distribution parameters
De— A and De — Dmax Scatter plots for the three particle are then merged with temperature from the Meteorological
shapes and the resulting fits. The power-law relation used foMeasurement System (MMS) on either platform, and sam-
the 2D-S data ife=0.5744%42° (units of mm and mrf),  ples with temperatures above 270 K are removed. Histograms
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Fig. A2. Histograms of ice water content (IWC), IWC weighted , '_?V%i"’T .
mean equivalent sphere diametére), and equivalent diameter weony
(De) dispersion from in situ cloud probes. The 2D-S & PIP size dis-

tributions from the DC-8, the 2D-S size distributions from the WB- Fig. A4. Scatterplot ofDme versus ice water content for in situ size
57, and both combined are shown. distributions from the DC-8 (2D-S and PIP) and from the WB-57

(2D-S).

10°

of the resulting IWC,Dme, and De dispersion for all DC-

8 flights, WB-57 flights, and both sets combined are shown ¢ gifficulty with using aircraft microphysical data for

in Fig. A_2. The size distributions from both aircraft cover a ¢ ¢loud a priori information is that it is seldom completely
rather wide range of values, but the WB-57 does not havgenresentative of the natural distribution of cloud ice mi-
the highest values of IWC anfime, because it flew at colder ooy sics. The issues of the size ranges, to which differ-
temperatures and stayed out of the updrafts. There are mucyy propes are sensitive, and of converting from 2-D optical
fewer samples for the WB-57 because it only flew on four 5 hes g the mass related parameters have already been dis-
flights. A scatterplot 0Dme versus temperature is shown in ¢, ,sseq. Another issue is that, during typical field campaigns,
Fig. A3. There is a fairly strong correlation between the typ- e ajrcraft sampling is seldom random and complete, partly
ical particle size as measured Byne and temperature over ,q 14 gjrcraft limitations and partly due to the multiple ob-
the whole range of temperatures. The DC-8 ceiling limits theje . fiyes of the campaign. In the case of TC4, the aircraft sam-
minimum temperature to about 215K, but the WB-57 x- jjing was constrained by the ceiling of the DC-8, the lim-
tends the temperature to 193 K. Figérshows the relation-  joq harticipation by the higher altitude WB-57, the need to
ship betweeDme and IWC for the size distributions fromthe 5\ i strong updrafts in convective cores, and the science ob-
two aircraft. There is clearly a correlation betweBfe and  jectives of sampling the outflow anvils (mostly colder than
IWC, though the pattern is not simply bivariate log-normal. 534 K). Thus, the ice microphysics scatter plots shown in
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Fig. A4 are certaimy biased. About 75 % of the data lie be- TC4 Relative Humidity Statistics for Temperature and IWC bins
tween temperatures of 215K and 235K, and for this reason T raweast e ‘ N
and others 50 % of th®. lie between 100 pm and 175 pm S g?j;m%z;"_fggg 25010 TS range |
(though the maximunbye is greater than 1600 um). ¢ T odoawe<Logm A

o
©

Rather than use an empirical probability distribution of ice
microphysics based on the 2D-S and PIP data, a multi-variate
normal (Gaussian) distribution in temperature, In (IWC),
In (Dme), and De dispersion is used. This allows the mi-
crophysical pdf to be specified with only a few parameters,
use the a priori idea that IWC anbiye are approximately
log-normal, generalize the microphysical data to some ex-
tent, and use the all important correlation between temper-
ature, Dme, and IWC. Since the TC4 microphysical dataset
used here is decidedly non-Gaussian, one has to be care-

o
3

o
o

o
I

Relative Humidity median and 25% to 75% range
o o
w 3

o
[N

ful about calculating the parameters of the equivalent multi- 01l : . g : H
variate Gaussian pdf. For example, in the 2D-S/PIP dataset : * ¥ N * .
In (IWC) has a long negative tail representing very low IWC %0 210 20 20 20 20 20 2n

Temperature (K)

values. Using the traditional method to calculate the param-
eters of the Gaussian distribution In (IWC) results in a largeFig. A5. Relative humidity median and distribution width (25 % to
standard deviation, which leads to extremely large a priori75 % range) as a function of temperature for four ice water content
IWC (e.g., & IWC at 273K is 167 g m3). Instead, two per-  bins.
centiles of the microphysical distribution are used to char-
acterize the equivalent Gaussian distribution. For In (IWC)
the median and 95th percentiley(= 0.5, p2 =0.95) are used; due to shattering of large ice crystals on the CAS inlet. Nev-
for In (Dme) p1=0.5, p2=0.90; for temperaturg; =0.05, ertheless, CAS data are used here with a variety of thresholds
p2=0.95; and forD. dispersionp; =0.25, p,=0.75. The  to reduce the ice particle contamination. The resulting liquid
equivalent Gaussian correlations between the four parameloud droplet distributions are still highly suspect, and should
eters are obtained from rank correlations, which are non-be thought of more as a placeholder, in that it is better to have
parametric. As in SecB, the cumulative distribution prob- some a priori distribution of supercooled cloud droplets than
ability of each dimension is converted to a standard normalassume none in the retrieval algorithm.
distribution value for each sample, and the correlation of The CAS data are used for seven DC-8 flights for which it
these Gaussian variables is calculated using a correlation mavas working during TC4. The LWC anbB,e are calculated
trix. The resulting parameters of the ice microphysics Gausfrom the number concentration spectra, and then merged
sian distribution are listed in Tablal. The table also lists  with the MMS temperature and the 2D-S/PIP IWC. Samples
some of the IWC andDpe that the Gaussian distribution with temperature outside the range 240 to 273 K, uiithdis-
generates for certain given temperatures. persion greater than 0.4, wifhy,e outside the range from 8 to

In moderate to strong updrafts, we expect supercooledtOpm, or with IWC less than 1@ gm~2 are removed. The
liquid cloud droplets to occasionally coexist with ice parti- CAS LWC is multiplied by a linear factor in temperature (0 at
cles. It is important to include supercooled cloud droplets240K, 1 at 273 K) to attempt to distinguish between smallice
in a microwave retrieval algorithm, because liquid dropletscrystals and cloud droplets. A multi-variate Gaussian distri-
are much more absorbing than ice particles, and so poterbution in temperature, In (IWC), ILWC), and In(Dme,lig)
tially can significantly affect the upwelling brightness tem- is fit to the data using the robust percentile method described
peratures. To include appropriate a priori information on su-for the ice microphysical distribution. The mean In (LWC)
percooled droplets, the relationship between liquid cloud wa-is —6.24 (median supercooled LWC is 0.00195g%)) and
ter content (LWC) and mass weighted mean droplet diamethe standard deviation of In (LWC) is 2.29 (so 99th percentile
ter (Dme), and temperature and ice water content is soughtLWC is 0.71 gnt3). The correlation between In (IWC) (ice
During TC4 there were no cloud probes that could accuratelyparticles) and In (LWC) (supercooled droplets) is 0.55, and
measure liquid cloud droplets in the presence of ice particlesbetween temperature and In (LWC) is 0.61.
The only cloud probe on the DC-8 designed to count and Due to the large-scale nature of the ECMWF fields, the rel-
size cloud droplets was the Cloud and Aerosol Spectrometeative humidity profiles do not have realistic correlation with
(CAS) Baumgardner et gl2001) from Droplet Measure- cloud ice water content. During TC4 a diode laser hygrome-
ment Technologies. The CAS has no way to distinguish beter (DLH, Diskin et al, 2002 on the DC-8 and the JPL Laser
tween small ice particles and liquid droplets. Furthermore,Hygrometer (JLH) on the WB-57 accurately measured wa-
Jensen et al2009 established that the CAS is highly sus- ter vapor density in the presence of ice particles. The laser
ceptible to spurious high concentrations of small particleshygrometer data for 11 DC-8 flights and 4 WB-57 flights
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Table Al. Ice particle microphysical statistics defining the a priori Gaussian probability distribution.

Temperature (K)  In(IWC) (gm3)  In (Dme) (LM) De dispersion
Mean 233.75 —4.779 4.924 0.388
Std dev 11.44 1.609 0.469 0.118

Correlations  pr-jwc =0.351  p7-p,,=0.664 PIWC-Dpe = 0.708
pr-disp=—0.205  piwc-disp=0.113  ppe-disp=—0.138

Temperature (K)  IWC (g m3) Dme (Hm)
+3 std dev 273.2 7.34 1646.5
+0 std dev 273.2 0.06 403.0
+3 std dev 235.0 1.12 581.7
—3stddev  200.0 1.2%10°° 13.4

are merged with MMS temperature and pressure, convertedefers to a set of related ice particle shapes over a wide range
to relative humidity with respect to liquid, and merged with of sizes, i.e., not one well-defined shape that is simply scaled
the 2D-S/PIP ice water content. To determine how the relawith size. Although some ice crystal shapes and sizes are
tive humidity depends on temperature and IWC, samples ar&nown to fall with a preferred orientation, the radiative trans-
grouped into 10K bins of temperature and factor of 10 binsfer model used in the retrieval program assumes randomly
in IWC. The median relative humidity with the range from oriented particles, and so that is assumed for the ice parti-
the 25th to 75th percentiles for the temperature and IWCcle scattering calculations. In this work particle shapes are
bins is graphed in FigA5. The median relative humidity in- sought to model the microwave radiative properties of ice
creases with temperature, slowly at first below 230K, andparticles in tropical convective cores, stratiform regions, and
then more rapidly. The median relative humidity tends to in- cirrus anvils. The goal is not the impossible task of simu-
crease with IWC, though not so much at the higher temperdating all of the possible ice particle shapes in tropical con-
ature bins (which have many fewer samples, though). Thevection, but to have a few types of realistic particle shapes
width of the relative humidity distribution has little tempera- that span the relevant properties of randomly oriented parti-
ture dependence but does decrease with increasing IWC. cles, such that mixtures of these particles can simulate the
A beta distribution of relative humidity is assumed with microwave radiative transfer of the the actual ensemble of
the mean and standard deviation depending on temperatutgarticles found in nature.
(T) and IWC according to

RHmean=a + bT + c¢T? + dIn (IWC)
RHstddev= ¢ + f In IWC). (A2) As reported inEvans et al(2005, Cloud Particle Imager

o ] ) _ . pictures of ice particles in convective anvils sampled in
The coefficients are obtained from the relative humidity crysTAL-FACE were mostly iregular particles, and often
§amples With. temperature Ie.:ss' than 270K by min.imi'z- aggregates of spheres or hexagonal plates. Whéiol0%
ing the nega_ltlve of the Io_g-I|I_<eI|hood of the beta distri- spheres are aggregated, the sphere aggregates would appear
_butlon pr_wnh the downhill simplex method. The result- {4 pe g good model of graupel, which is an appropriate par-
ing coefficients are:=6.989,b=-0.0571,¢=0.0001309,  c|e type for tropical convective cores. The 30 um diame-
d= 0',01417§= 0.03844, angf' = —0.007965, fo inKand (g stochastic ice sphere aggregates modeldvims et al.
IWCingm™. (2005 are extended here on the high end to larger number of
sphere monomers (up to 315000) and on the low end by ice
spheres ranging from 2 to 30 um in diameter. The two sizes
of hexagonal plate aggregates modeleBwans et al(2005
are extended here only on the low end with single hexagonal
plates ranging in maximum diameter from 5 to 250 um. The
hexagonal plate aggregate and sphere aggregate shapes are

Particle shape is the most difficult part of ice cloud remoteillustrated in Fig.B1. The low density ice spheres modeled
sensing, and that is also true for submillimeter-wave sensingin Evans et al(2009 are not used here because microwave
The longer wavelengths of cloud radars and millimeter-wavescattering properties of equivalent spheres are a very poor
and submillimeter-wave radiometers are sensitive to large@Pproximation to accurate calculations of complex realistic
particles and the broader features of particle shape, as conghaped ice particles (e.¢kulie et al, 2010.

pared with visible and infrared sensing. Here the word shape

B1 Hexagonal plate and sphere aggregates

Appendix B

Particle shape models and preparation of scattering
tables
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combined vertically until they overlap by some small fraction
(5% used here) of the mass of the lower particle. There is no
physical fitting together of the dendrite branches or breaking
of the snowflakes. Each snowflake aggregate is represented
by a list of the position, rotation matrices, and 3-D array of
filled voxels of its dendrite components. The upper (collect-
ing) and lower (collected) particles in a collision are rendered
into a large 3-D array to determine if and at what offset the
two particles join. After a collision, if a particle moment of
inertia principal axis is more than a specified angle from ver-
tical (2° used here), the particle is rotated so that it is back in
balance. New pristine crystals from the original gamma dis-
Fig. B1. Image showing two hexagonal plate aggregates (left) andtribution may be stochastically created according to a vapor
two sphere aggregates (right). The plate aggregates are made deposition mass rate. Aggregates that have fallen more than a
6 thinner plates and 40 thicker plates. The sphere aggregates hagpecified distance, which tend to be the largest fastest falling
6 and 3600 spheres. The lighter shades indicate the closer parts @es, are removed from the simulation volume, but included
the particle, and the darker shades indicate the farther parts. in the output.
The snowflake aggregates used in the scattering tables are
generated in one aggregation simulation. The input crystals
B2 Snowflake aggregation model to the simulation were 56 2-D dendrites ranging in diam-
eter from 100 to 2000 um. The input dendrites have 2 um
Graupel is one type of large ice particles associated with prepixel size, but the voxel size in the aggregation simulation
cipitation in convective systems, but a lower density particleis 16 um, and the output grid resolution used for scattering
type is needed to model snowflake aggregates associated wittalculations is 32 um. There are 3000 initial particles, made
stratiform regions. Snowflake aggregates are modeled herrom multiple copies of the input 56 dendrites, having an ice
with a physically based simulation of aggregation of two- water content of 0.1 g ¥ and an initial gamma distribution
dimensional dendritic crystals. The 2-D dendritic crystals are Dy of 300 um. The fall speed calculations are carried out
generated with the semi-physical crystal depositional growthat 400 mb pressure and15°C (the temperature of maxi-
simulation code ofGravner and Griffeatlf2008. There is  mum dendritic growth). The snowflakes are given 4000 m
no method for mapping their eight input parameters to tem-before falling out of the aggregation zone. The vapor mass
perature and vapor pressure, so many simulations with randeposition rate is 1.5 10-*gm~3s~1, and the simulation
dom parameters were performed and dendritic crystals setime is 3h. The aggregation simulation ends with 1429 in
lected subjectively. These 2-D dendrites are assigned a thicksloud particles (with an IWC of 0.208 g™d) and 56 fallen
ness depending on diameter from theer and Veal(1970 aggregates (with a melted precipitation depth of 5.85 mm).
power-law formula for thickness of dendriteBetty and  Of these snowflakes 89 were chosen for the scattering cal-
Huang(2010 generated random aggregates of dendrites digculations, ranging in equivalent diametddd) from 51 to
itized from snow crystal microphotographs, which were then1986 um and maximum diameter from 128 to 8884 um. The
used for modeling lower frequency microwave scattering. goal of the selection was to choose three aggregates in each
The 2-D dendrites are aggregated in a Monte Carlo phys9.5 dB D¢ bin with aspect ratios spaced from the median to
ical simulation similar toMaruyama and Fujiyoshji2005, the maximum or, if only unaggregated dendrites are in the
who used sphere monomers. A large number of particles arsize bin, to choose different dendrites. This approach results
introduced to a fixed volume with an initial gamma size dis- in a variety of snowflake aggregate morphologies covering
tribution in equivalent volume diameter. The Monte Carlo a large range of particle sizes for making size distributions.
aggregation method is based Gillespie (1975. The col- Renderings of seven of the snowflakes are shown inB2g.
lision rate is calculated for all pairs of particles using the
relative fall speeds and the convex circumscribed area an83 DDA calculations for the scattering tables

perimeter of the particles. Thdeymsfield and Westbrook

(2010 parameterization for fall speeds is used. The particles?€Sults in Sects show that the radiative transfer modeling
are assumed to fall with a horizontal orientation. A pair of IS @ Poor fit to the CoSSIR brightness temperatures in some

particles is randomly selected to collide according to the col-NgN IWP situations with ice particle mixtures of the plate
lision rate matrix. The centroids of the two particles are ran-299regates, sphere aggregates, and snow aggregates. The fits
domly offset within a convex polygon given by the convex improved with the addition of large solid ice spheres meant to
hull of the faster falling particle expanded by the “radius” represent hail. Thus, most results presented are for scattering

of the slower particle. The particle being collected is ran-{@Ples including four particle shapes (or types).
domly rotated over all three axes. The two particles are then
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depends on the particle shape (see Td&ilg mainly due

to choices about what sizes are appropriate for each shape.
There are usually two particle shapes available at dagh

so that there is uncertainty due to particle shape. Dhe

are always spaced at 0.5dB intervals. F@y dispersions
(size distribution widths) are tabulated in the scattering ta-
bles: at 0.1, 0.3, 0.5, and 0.7. The temperature dependence
of the ice scattering properties is represented with two tem-
peratures: 215K and 260 K. The real part of the index of re-
fraction of ice at submillimeter wavelengths varies linearly
in temperature. The imaginary index actually varies nearly
quadratically in temperature, but, since the imaginary part is
small, the error in scattering properties is deemed not signif-
icant using these two well-placed temperatures. Using two
temperatures decreases the scattering computations and the
interpolation time.

B4 Melting model

The lower frequencies of CoSSIR, such as 220 GHz and
183.3+ 6.6 GHz, have substantial sensitivity to hydromete-
ors below the melting level, though have little sensitivity
Fig. B2. Images showing seven snowflake aggregates, each froni® the surface or boundary layer in tropical atmospheres.
three perspectives: view of X-Y plane (top panel), view of X-z Therefore, an ice cloud retrieval algorithm for CoSSIR,
plane (middle panel), and view of Y-Z plane (bottom panel). A solar and millimeter-wave radiometers in general, needs to model
pseudo-radiative transfer rendering is used; the solar illumination ismelting ice, raindrops, and cloud droplets below the melt-
from the upper left at 45zenith angle. The equivalent volume di- ing level. The approach taken here is to use a simple melting
ameters of these aggregates are 254, 369, 321, 510, 854, 1315, apgodel of the ice particles, which is appropriate for stratiform
1881 pm. regions (small updrafts). This melting model is implemented
in the scattering tables, in which the scattering properties
are a function of temperature, rather than explicitly in the

Except for ice spheres, the scattering calculations for ranCDF/EOF Qe”efaﬁon program or retlrieval program.
domly oriented ice particles are computed with the discrete | "€ Melting model operates on single particles, and uses

dipole approximation (DDA). This method divides the par- & fall-speed relation and a heat transfer parameterization to
ticle up into many dipoles with the dipole size being small calculate the melted mass fraction as a function of height,

compared to the wavelength: generally the dipole size i2Nd thus temperature using a specified lapse rate. The diam-
32 um or smaller. The dipole discretization of a particular €t Of the initial ice particle is taken to be the area equiva-
particle is kept the same for all frequencies. The matrix in-1€nt diameter. The particles are assumed to be spherical, and
version option of the DDA code described Evans and the fall velocity is obtained frortleymsfield and Westbrook

Stepheng19953 is used for particles with 5000 or fewer _(201(). The pa_rticle mass that melts as it_falls a distance d
dipoles. For larger particles (and all snowflake aggregatesi® Tom Eq. (1) inBauer et al(2000, which is derived from
the ADDA code ofyurkin and Hoekstrg2011) is run, which & Rutledge and Hobbe.983 parameterization that includes
uses the FFT conjugate-gradient solution method and can béentilation. The diameteDr, of the melting particle is ob-
run on parallel processors. A least squares fitting proceduré?ined from

is used to convert the phase (Mueller) matrix ADDA output

as a function of anglepto Leg;endre s)eries coefﬁcients.Ffl’heDf?1 = Jm D? + (1= fm) Di3’ (B1)

ice indice_s of refraction are fromatzler (2006. The DDA where f is the melted mass fractiom; the equivalent area
computations are performed for 18 hexagonal plates, 40 platgis meter of the original ice particle, ar} the diameter of

aggregates, 36 sphere aggregates, and 89 snow aggregatesne fyjly melted raindrop (from the ice particle mass). This
The scattering tables contain the extinction, single scat-

X af melting model ignores collection, evaporation, and liquid
tering albedo, and Legendre coefficients of the phase funcgpeqging, and assumes that the updraft velocity is negligible.
tion for gamma size distributions (iPe¢) of randomly ori-
ented particles. The scattering properties are tabulated as a
function of Dye, De dispersion, particle shape, and tem-
perature. The range dbye available in a scattering table
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Table B1. Range of ice water content weighted equivalent spheregamma size distributions are assembled into scattering ta-

diameter. bles. The structure of the melting particle scattering tables
must be the same as that of the ice particles, except for the
Particle shape MiDme Max Dme ~NumberDme different temperature range, of course. The scattering proper-
Plate aggregates 6.310 398.1 37 ties of the melting/melted particles are calculated at 20 tem-
Sphere aggregates 5.012 1584.9 51 peratures ranging from 272 to 300K (0.5K spacing from
Snow aggregates 63.10 1584.9 29 273 to 277K, 1.0K spacing from 277 to 282K, and 2.0K
Hail (solid spheres) 398.1 3162.3 19 spacing from 282 to 290 K).
Appendix C

The microwave scattering properties of the melting parti-
cles are calculated for spheroids using the T-matrix methodStochastic generation of radar reflectivity
code of MishchenkoNlishchenko and Travjsl999. Since
assuming spheroids and a dielectric mixing rule is a poorCloudSat radar reflectivity is randomly simulated for lay-
approximation to the microwave scattering properties of re-ers in which the reflectivity is below the 26 dBZ thresh-
alistic large ice particles, a radiatively equivalent sphere orold, but are known to be cloudy from the CALIPSO lidar
spheroid is found to match the DDA ice scattering proper-cloud mask (averaged to the CloudSat range bins in the
ties of the ice particle. First the DDA ice scattering proper- CloudSat GEOPROF-LIDAR product as describedviace
ties are extrapolated in temperature to 273.2 K. An attemptt al, 2009. The procedure samples stochastically from a
is made to match three scattering quantities with Mie theoryBayesian posterior probability distribution function (pdf).
for spheres by adjusting the “scattering” radius and the reallThe prior pdf has three factors, which result in appropriate
and imaginary parts of the index of refraction of the ice/air horizontal and vertical smoothness and agreement with the
mixture. For radar backscattering (i.e., 94 GHz) the fractionalheight-dependent reflectivity distribution obtained from the
difference in backscatter and extinction and the difference ininput ice microphysical statistics. The likelihood function in
single scattering albedo are minimized. For the radiometethe Bayesian analysis assures agreement with the CloudSat
channels, the fractional difference in extinction and the dif- reflectivity and the reflectivity noise distribution.
ference in single scattering albedo and asymmetry parame- The prior pdf for the simulated reflectivity is the product
ter are minimized. In both cases the downhill simplex sim- of three Gaussian pdfs in dBZ. The first Gaussian prior dis-
ulated annealing method is used to minimize an objectivetribution is for the difference in reflectivity between layers at
function that combines the three scattering quantities. Usuthe same altitude in adjacent CloudSat columns and assures
ally a perfect match to the three DDA scattering quantitieshorizontal smoothness. This pdf has zero mean and standard
can be found using the radiatively equivalent sphere conceptieviation calculated from the reflectivity difference of layers
If an excellent sphere match is not found, then the T-matrixin adjacent columns. The second Gaussian prior distribution
method is used to find a matching spheroid by adjusting thas for the difference in reflectivity between vertically adja-
equivalent radius, aspect ratio, and index of refraction. Whercent layers in the same column and assures vertical smooth-
the scattering properties of the melting particles are calcuness and extrapolation to lower reflectivities with height. The
lated with the T-matrix method, it is the DDA matching ice mean and standard deviation of this pdf are calculated from
spheroid properties (radius, aspect ratio, and index of refracadjacent pairs of layers in which the upper layer has re-
tion) that are mixed with the water properties. The dielec-flectivity less than that of the lower layer. The statistics for
tric constant of the melting particle is calculated with the these two Gaussian prior pdfs are only accumulated for lay-
Maxwell Garnett formula mixing for ice/air inclusions in wa- ers in which the reflectivity is between the specified threshold
ter, and the index of refraction of water is frdRay (1972. (e.g.,—26dBZ) and 5dBZ greater. The third Gaussian prior
The particle temperature is at the melting point until the par-pdf is determined from the reflectivity distribution calculated
ticle is fully melted, and then the ambient temperature is asfor each hydrometeor layer height from the input (temper-
sumed. The T-matrix radius is obtained by interpolating be-ature dependent) ice microphysical statistics. For the trop-
tween the cubes of the raindrop radius and the DDA matchdical examples shown here, the ice microphysical pdfs have
ing radius using the melted mass fractify The aspectratio standard deviations around 10 dBZ and means that decrease
is found by linearly interpolation witty,. When the DDA from —17.4dBZ for 10.0-10.5km te-36.2 dBZ for 14.5—
properties are matched by Mie theory, then the aspect ratid5.0 km. The horizontal smoothness pdf standard deviation
of the melting particle remains at 1. After the particle is fully is 2.9 dBZ ,and the vertical pdf mean and standard deviation
melted, a spherical shape is assumed and the T-matrix calcare—5.4dBZ and 3.7 dBZ.
lations are done for liquid water for the rest of the profile. The Bayesian likelihood pdf for the simulated reflec-

Once the scattering properties of the single melting andtivity is a Gaussian in reflectivity factorZ (units of
melted particles are calculated, the scattering properties ovenm® m—3) around the CloudSat measured reflectivifisds).
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The Gaussian likelihood pdf standard deviatienz)is the microwave radiative transfer modeling of stratiform rainfall, J.

CloudSat range bin noise rms divided by the square root Atmos. Sci., 57, 1082-1104, 2000.

of the number of CloudSat range bins that fit into the Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and

layer thickness. The CloudSat reflectivity noise rms is deter- Newton, R.: The cloud, aerosol and precipitation spectrometer:

mined from valid ¢ > —88.8 dBZ) stratospheric range bins A new instrument for cloud investigations, Atmos. Res., 59-60,

. . ) . 251-264, 2001.
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ical ClougSat é;olumnsp used yhere the mean noise rmspiguehler' S- A, Jimenez, C., Evans, K. F., Eriksson, P., Rydberg, B.,

9 48% 10-4mmb m-3 (~30.2dBZ) alnd there is onlv about Heymsfield, A. J., Stubenrauch, C. J., L_ohmann, U., Emde, C,,
: o o e 5 .y John, V. O., Sreerekha, T. R., and Davis, C. P.: A concept for

a 1% variation among different orbits. The Bayesian poste- ; gateliite mission to measure cloud ice water path, ice particle

rior pdf is stochastically sampled by generating samples from  sjze, and cloud altitude, Q. J. Roy. Meteorol. Soc., 133, 109-128,

the Gaussian prior pdf in dBZ, converting # and using 2007.
the rejection method to sample the likelihood function (with Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S.,
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threshold depends on whether the lidar detects cloud. Fig- app|. Meteorol. Clim., 45, 42—62, 2006.
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doi:10.1029/2007JD008673008.

AcknowledgementsThe authors thank Bryan Monosmith for engi- .
Delanoe, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-

neering support of CoSSIR in the lab and during TC4. Glenn Diskin " ’ )
and James Podolske provided the DLH data and Robert Herman MODIS retrievals of the properties of ice clouds, J. Geophys.
provided the JLH data to the ESPO archive. The NASA CloudSat__ €S- 115, D00H290i:10.1029/2009JD012348010.

project provided the CloudSat GEOPROF, GEOPROF-LIDAR, Diskin, G. S.,Sachse,G.W.,Podolske,J.R.,and Slate, T. A.: Open-
ECMWF-AUX files through the CloudSat Data Processing Center, Path airborne tunable diode laser hygrometer, Proc. SPIE, 196,
Two anonymous reviewers are thanked for helping to improve the 4817,d0i:10.1117/12.45373@002.

clarity of this article. KFE was supported in this work by NASA Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., and John, V.
Award NNXO7AKS3G. 0.: Assessing observed and modelled spatial distributions of ice

water path using satellite data, Atmos. Chem. Phys., 11, 375—
391,d0i:10.5194/acp-11-375-2012011.
Evans, K. F.: SHDOMPPDA: A radiative transfer model for cloudy
sky data assimilation, J. Atmos. Sci., 64, 3858-3868, 2007.
Evans, K. F. and Stephens, G. L.: Microwave radiative transfer
References through clouds composed of realistically shaped ice crystals. Part
I: Single scattering properties, J. Atmos. Sci., 52, 2041-2057,
Andrieu, C. and Thoms, J.: A tutorial on adaptive MCMC, Stat. 1995a.

Edited by: S. Schmidt

Comput., 18, 343-373, 2008. Evans, K. F. and Stephens, G. L.: Microwave radiative transfer
Auer, A. H. and Veal, D. L.: The dimension of ice crystals in natural  through clouds composed of realistically shaped ice crystals,
clouds, J. Atmos. Sci., 27, 919-926, 1970. Part Il: Remote sensing of ice clouds, J. Atmos. Sci., 52, 2058—

Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval 2072, 1995b.
of ice cloud microphysical parameters using the CloudSatEvans, K. F., Walter, S. J., Heymsfield, A. J., and Deeter, M.
millimeter-wave radar and temperature, J. Geophys. Res., 114, N.: Modeling of submillimeter passive remote sensing of cirrus
D00A23,d0i:10.1029/2008JD010042009. clouds, J. Appl. Meteorol., 37, 184—205, 1998.

Bannister, R. N.: A review of forecast error covariance statistics inEvans, K. F., Walter, S. J., Heymsfield, A. J., and McFarquhar, G.
atmospheric variational data assimilation, 1l: Modelling the fore- ~ M.: The Submillimeter-wave cloud ice radiometer: Simulations
cast error covariance statistics, Q. J. Roy. Meteorol. Soc., 134, of retrieval algorithm performance, J. Geophys. Res., 107, 4028,
1971-1996, 2008. doi:10.1029/2001JD000702002.

Battaglia, A., Augustynek, T., Tanelli, S., and Kollias, P.: Multiple Evans, K. F., Wang, J. R., Racette, P. E., Heymsfield, G., and Li,
scattering identification in spaceborne W-band radar measure- L.: Ice cloud retrievals and analysis with data from the Com-
ments of deep convective cores, J. Geophys. Res., 116, D19201, pact Scanning Submillimeter Imaging Radiometer and the Cloud
doi:10.1029/2011JD016142011. Radar System during CRYSTAL-FACE, J. Appl. Meteorol., 44,

Bauer, P., Khain, A., Pokrovsky, A., Meneghini, R., Kummerow, 839-859, 2005.

C., Marzano, F., and Poieres Baptista, J. P. V.: Combined cloud

Atmos. Meas. Tech., 5, 22772306 2012 www.atmos-meas-tech.net/5/2277/2012/


http://dx.doi.org/10.1029/2008JD010049
http://dx.doi.org/10.1029/2011JD016142
http://dx.doi.org/10.1029/2007JD008673
http://dx.doi.org/10.1029/2009JD012346
http://dx.doi.org/10.1117/12.453736
http://dx.doi.org/10.5194/acp-11-375-2011
http://dx.doi.org/10.1029/2001JD000709

K. F. Evans et al.: Ice cloud retrieval algorithm

Ferraro, R. R., Weng, F., Grody, N. C., Zhao, L., Meng, H., Kon-
goli, C., Pellegrino, P., Qiu, S., and Dean, C.: NOAA operational

2305

P., IET Electromagnetic Waves Series, Vol. 52, Institute of Engi-
neering and Technology, Stevenage, UK, 2006.

hydrological products derived from the advanced microwave Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of

sounding unit, IEEE T. Geosci. Remote, 43, 1036-1049, 2005.
Gasiewski, A. J.: Numerical sensitivity analysis of passive EHF and

SMMW channels to tropospheric water vapor, clouds, and pre-

cipitation, IEEE T. Geosci. Remote, 30, 859-870, 1992.
Gillespie, D. T.: An exact method for numerically simulating the

a current FORTRAN implementation of the T-matrix method for
randomly oriented, rotationally symmetric scatterers, J. Quant.
Spectrosc. Ra., 60, 309-324, 1998.

Petty, G. W. and Huang, W.: Microwave backscatter and extinction

by soft ice spheres and complex snow aggregates, J. Atmos. Sci.,

stochastic coalescence process in a cloud, J. Atmos. Sci., 32, 67, 769-787, 2010.

1977-1989, 1975.

Gravner, J. and Griffeath, D.: Modeling snow crystal growth II: A
mesoscopic lattice map with plausible dynamics, available at:
http://psoup.math.wisc.edu/Snowfakes.hthysica D: Nonlin-
ear Phenomena, 237, 385-404, 2008.

Heymsfield, A. J. and Westbrook, C. D.: Advances in the estima-

Posselt, D., L'Ecuyer, T. S., and Stephens, G. L.: Exploring the er-

ror characteristics of thin ice cloud property retrievals using a
Markov chain Monte Carlo algorithm, J. Geophys. Res., 113,
D24206,d0i:10.1029/2008JD010832008.

Ray, P. S.: Broadband complex refractive indices of ice and water,

Appl. Optics, 11, 1836-1844, 1972.

tion of ice particle fall speeds using laboratory and field mea- Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: The-

surements, J. Atmos. Sci., 67, 2469-2482, 2010.

ory and Practice, World Sci., River Edge, NJ, 238 pp., 2000.

Jensen, E. J., Lawson, P., Baker, B., Pilson, B., Mo, Q., Heyms-Rossow, W. B. and Schiffer, R. A.: Advances in understanding

field, A. J., Bansemer, A., Bui, T. P., McGill, M., Hlavka, D.,
Heymsfield, G., Platnick, S., Arnold, G. T., and Tanelli, S.: On

clouds from ISCCP, B. Am. Meteorol. Soc., 80, 2261-2288,
1999.

the importance of small ice crystals in tropical anvil cirrus, At- Rutledge, S. A. and Hobbs, P. V.: The mesoscale and microscale

mos. Chem. Phys., 9, 5519-5586j:10.5194/acp-9-5519-2009
20009.

Jimenez, C., Buehler, S. A., Rydberg, B., Eriksson, P., and Evans,

structure and organization of clouds and precipitation in midlat-
itude cyclones, VIII: A model for the “seeder-feeder” process in
warm-frontal rainbands, J. Atmos. Sci., 40, 1185-1206, 1983.

K. F.: Performance simulations for a submillimetre wave cloud Rydberg, B., Eriksson, P., Buehler, S. A., and Murtagh, D. P.: Non-

ice satellite instrument, Q. J. Roy. Meteorol. Soc., 133, 129-149,
doi:10.1002/qj.1342007.
King, M. D., Tsay, S.-C., Platnick, S. E., Wang, M., and Liou, K.-

Gaussian Bayesian retrieval of tropical upper tropospheric cloud
ice and water vapour from Odin-SMR measurements, Atmos.
Meas. Tech., 2, 621-63dpi:10.5194/amt-2-621-2002009.

N.: Cloud retrieval algorithms for MODIS: Optical thickness, Seo, E. and Liu, G.: Retrievals of cloud ice water path by combin-

effective particle radius, and thermodynamic phase, Tech. rep.,
MODIS Science Team, MODIS Algorithm Theoretical Basis
Document No. ATBD-MOD-05, NASA Goddard Space Flight
Center, Greenbelt, MD USA, 1997.

Kulie, M. S., Bennartz, R., Greenwald, T. J., Chen, Y., and Weng,
F.: Uncertainties in microwave properties of frozen precipitation:
Implications for remote sensing and data assimilation, J. Atmos.
Sci., 67, 3471-3487, 2010.

Lawson, R. P., O'Connor, D., Zmarzly, P., Weaver, K., Baker, B.,
Mo, Q., and Jonsson, H.: The 2D-S (Stereo) probe: Design and

ing ground cloud radar and satellite high-frequency microwave
measurements near the ARM SGP site, J. Geophys. Res., 110,
D14203,d0i:10.1029/2004JD005722005.

Stephens, G. L., Vane, D. G., Tanelli, S., Im, E., Durden, S.,

Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R.,
L'Ecuyer, Haynes, T. J., Lebsock, M., Suzuki, K., Waliser,
D., Wu, D., Kay, J., Gettelman, A., Wang, Z., and Marc-
hand, R.: CloudSat mission: Performance and early science af-
ter the first year of operation, J. Geophys. Res., 113, DO0A18,
doi:10.1029/2008JD009982008.

preliminary tests of a new airborne, high-speed, high-resolutionTamminen, J. and Kyrola, E.: Bayesian solution for nonlinear and

particle imaging probe, J. Atmos. Ocean. Tech., 23, 1462-1477,
2006.

non-Gaussian inverse problems by Markov chain Monte Carlo
method, J. Geophys. Res., 106, 14377-14390, 2001

Li, L., Heymsfield, G. M., Racette, P. E., Tian, L., and Zenker, E.: Toon, O. B., Starr, D. O., Jensen, E. J., Newman, P. A, Platnick, S.,

A 94-GHz Cloud Radar System on a NASA High-Altitude ER-2
Aircraft, J. Atmos. Ocean. Tech., 21, 1378-1388, 2004.

Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens,
G., Trepte, C., and Winker, D.: A description of hydrometeor
layer occurrence statistics derived from the first year of merged
Cloudsat and CALIPSO data, J. Geophys. Res., 114, DO0A26,
doi:10.1029/2007JD009753009.

Schoeberl, M. R., Wennberg, P. O., Wofsy, S. C., Kurylo, M. J.,
Maring, H., Jucks, K. W., Craig, M. S., Vasques, M. F., Pfister,
L., Rosenlof, K. H., Selkirk, H. B., Colarco, P. R., Kawa, S. R.,
Mace, G. G., Minnis, P., and Pickering, K. E.: Planning, imple-
mentation, and first results of the Tropical Composition, Cloud
and Climate Coupling Experiment (TC4), J. Geophys. Res., 115,
D00J04,d0i:10.1029/2009JD013073010.

Marchand, R. T., Mace, G. G., and Ackerman, T. P.. Hy- Venema, V., Ament, F., and Simmer, C.: A Stochastic lItera-

drometeor detection using CloudSat: An Earth orbiting
94 GHz cloud radar, J. Atmos. Ocean. Tech., 25, 519-533,
doi:10.1175/2007JTECHA1006.2008.

Maruyama, K. and Fujiyoshi, Y.: Monte Carlo Simulation of the Wu,

Formation of Snowflakes, J. Atmos. Sci., 62, 1529-1544, 2005.
Matzler, C.: Microwave dielectric properties of ice, in: Thermal Mi-

crowave Radiation, Applications for Remote Sensing, edited by:

Matzler, C., Rosenkranz, P. W., Battaglia, A., and Wigneron, J.

www.atmos-meas-tech.net/5/2277/2012/

tive Amplitude Adjusted Fourier Transform algorithm with im-
proved accuracy, Nonlin. Processes Geophys., 13, 321-328,
doi:10.5194/npg-13-321-2008006.

D. L., Jiang, J. H., and Davis, C. P. EOS MLS
cloud ice measurements and cloudy-sky radiative trans-
fer model, IEEE T. Geosci. Remote, 44, 1156-1165,
doi:10.1109/TGRS.2006.869932006.

Atmos. Meas. Tech., 5, 22804 2012


http://psoup.math.wisc.edu/Snowfakes.htm
http://dx.doi.org/10.5194/acp-9-5519-2009
http://dx.doi.org/10.1002/qj.134
http://dx.doi.org/10.1029/2007JD009755
http://dx.doi.org/10.1175/2007JTECHA1006.1
http://dx.doi.org/10.1029/2008JD010832
http://dx.doi.org/10.5194/amt-2-621-2009
http://dx.doi.org/10.1029/2004JD005727
http://dx.doi.org/10.1029/2008JD009982
http://dx.doi.org/10.1029/2009JD013073
http://dx.doi.org/10.5194/npg-13-321-2006
http://dx.doi.org/10.1109/TGRS.2006.869994

2306 K. F. Evans et al.: Ice cloud retrieval algorithm

Wu, D. L., Austin, R. T., Deng, M., Durden, S. L., Heymsfield, A. Yurkin, M. A. and Hoekstra, A. G.: The discrete-dipole-
J., Jiang, J. H., Lambert, A,, Li, J.-L., Livesey, N. J., McFar-  approximation code ADDA: Capabilities and known limitations,
quhar, G. M., Pittman, J. V., Stephens, G. L., Tanelli, S., Vane, J. Quant. Spectrosc. Ra., 112, 2234-2247, 2011.

D. G., and Waliser, D. E.: Comparisons of global cloud ice from Zhang, Y. and Mace, G. G.: Retrieval of cirrus microphysical prop-

MLS, CloudSat, and correlative data sets, J. Geophys. Res., 114, erties with a suite of algorithms for airborne and spaceborne

D00A24,d0i:10.1029/2008JD0099482009. lidar, radar, and radiometer data, J. Appl. Meteorol. Clim., 45,
1665-1689, 2006.

Atmos. Meas. Tech., 5, 22772306 2012 www.atmos-meas-tech.net/5/2277/2012/


http://dx.doi.org/10.1029/2008JD009946

