
ATOC/ASTR 5560 — Test 2 Solutions
November 30, 2001

100 points total

1. (30 pts) A volcanic eruption results in a layer of sulfuric acid aerosol droplets in the Earth’s
lower stratosphere. The layer is 5 km thick and has an average size distribution character-
ized by a lognormal distribution with N = 100 cm−3 number concentration, r0 = 0.2 µm
modal radius, and σ = 0.5 standard deviation of ln r.

a) Calculate the effective radius of this size distribution. What is the size parameter of the
effective radius for a wavelength of λ = 10 µm?

For a lognormal size distribution the effective radius (ratio of third to second moments) is

re = r0e
5σ2/2 = (0.2 µm)e2.5(0.5)2 = 0.374 µm

The size parameter for this radius is

ee =
2πre

λ
=

2π0.374 µm

10 µm
= 0.23

b) Calculate the optical depth of the aerosol layer. The index of refraction of sulfuric acid at
λ = 10 µm is m = 2.094− 0.306i (m2

−1
m2+2

= 0.542− 0.0933i).

The size parameter above indicates that the aerosol size distribution is close to the Rayleigh
limit. Since the imaginary part of the index of refraction is large, the Rayleigh limit means
that the absorption cross section will dominate the scattering cross section. The optical depth
is the vertical integral of the volume extinction coefficient, and the extinction coefficient is
the integral over the size distribution of the extinction cross section:

τ =
∫

∞

0
βextdz = βext∆z βext =

∫ infty

0
Cabsn(r)dr

The Rayleigh absorption cross section formula is

Cabs = −
8π2r3

λ
Im

[

m2 − 1

m2 + 2

]

Combining these equations gives

τ = ∆z
8π2

λ
Im

[

m2 − 1

m2 + 2

]

∫ infty

0
n(r)r3dr

For a lognormal size distribution the third moment is
∫ infty

0
n(r)r3dr = Nr3

0e
9σ2/2

Therefore the optical depth is

τ = 8π2(0.0933)
5 km

10 µm
(100 cm−3)(0.2 µm)3(3.08)
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τ = (9.1 km cm−3µm2)(105 cm/km)(10−4 cm/µm)2 = 0.0091

c) If the temperature of the stratospheric aerosols is 215 K and the surface/lower atmosphere
at 10 µm radiates like a blackbody at 290 K, what is the fractional change in upwelling
longwave flux at 10 µm due to the volcanic aerosols?

Bλ(T ) =
c1

λ5[exp(c2/λT )− 1]
c1 = 1.1911×108 W m−2 sr−1 µm4 c2 = 1.4388×104 K µm

This part requires that you remember one of the most fundamental concepts from the first
part of the course. The upwelling thermal infrared radiance from a single absorbing layer is

I = (1− e−τ/µ)Bλ(Ta) + e−τ/µBλ(Ts)

The first term is the emissivity times the Planck function at the aerosol temperature, while the
second term is the transmissivity times the Planck function of the surface. To approximate
flux from radiance at a single angle, choose µ = 0.6. The transmissivity is

e−τ/µ = e0.0091/0.6 = 0.985

The two Planck functions are

Bλ(Ta) = 1.48 W m−2sr−1µm−1 Bλ(Ts) = 8.40 W m−2sr−1µm−1

The upwelling radiance at µ = 0.6 including the aerosol layer is

I = 8.297 W m−2sr−1µm−1

This is to be compared with the radiance without the aerosol which is the Planck function
at the surface. The aerosol layer decreases the upwelling flux by 1.2%. If this same per-
centage decrease was true across the longwave spectrum, then the global average decrease
in outgoing longwave flux would be (0.012)(239 W/m2)=3 W/m2.

2. (20 pts) Consider scattering of light by a large particle in the geometric optics limit.

a) What is the limiting value of the extinction efficiency Qext?

Qext = 2

If the imaginary part of the index of refraction mi is zero, what is the value of the single
scattering albedo ω?

No absorption so ω = 1.

If the imaginary part of the index of refraction is significant (|mi| > 1/x, where x is the size
parameter), what is the value of the single scattering albedo ω in the limit x →∞?

Rays that penetrate particle surface are all absorbed so Qabs = 1 and Qsca = 1 (from diffrac-
tion), so ω = 0.5.
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b) How does the width of the forward peak in the phase function scale with size parameter?
Does the forward peak width depend significantly on the real or imaginary part of the index
of refraction? Why or why not?

The width of the diffraction peak in the phase function is inversely proportional to size
parameter, ∆Θpeak ∝ 1/x. The width does not depend on the index of refraction because
diffraction is determined by the size of the particle, not composition, since the diffracted rays
do not enter the particle. Fraunhoffer diffraction is derived by considering a hole in a screen,
so it is the projected size and shape that matter.

c) The asymmetry parameter does not have a simple limiting value. The asymmetry parame-
ter is about 0.85 for water droplets (for r > 5 µm) in the visible where the index of refraction
is m = (1.33, 0.0).

How does the limiting value (as x → ∞) of the asymmetry parameter change as the imagi-
nary part mi increases in magnitude. Explain why.

g increases. As mi increases there is more absorption, so a smaller fraction of the rays
entering the particle escape. Thus the phase function becomes dominated by the diffraction
peak in the Θ = 0 direction and hence g → 1.

How does the limiting value of the asymmetry parameter change as the real part mr in-
creases (assuming a small imaginary part). Explain why.

g decreases. As mr increases the particle becomes more reflective (consider the Fresnel
reflection formula) and more refractive. Thus penetrating rays are scattered by larger angles
and hence g decreases.

3. (35 pts) The dust aerosol in a planetary atmosphere has optical depth of 0.1, single scattering
albedo of 0.84, and asymmetry parameter of 0.8 at 0.6 µm wavelength. At this wavelength
the only other radiatively active component is molecular absorption with optical depth 0.02.

a) Calculate the delta scaled total atmosphere optical properties.

First combine the optical properties:

τt = τa + τg = 0.12 ωt =
τaωa

τt
= 0.70

since the molecular absorption has ωg = 0.

The delta scaling formulas are

τ ′ = (1− ωf)τ ω′ =
(1− f)ω

1− ωf
g′ =

g − f

1− f

In the Eddington approximation we use f = g2. The resulting scaled optical properties are

τ ′ = 0.06624 ω′ = 0.4565 g′ = 0.4444

b) Calculate the approximate atmosphere albedo assuming a black surface for a Sun angle
of µ0 = 0.5.
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Since the scaled optical depth is � 1 and flux quantities are desired, the optically thin limit
of the Eddington solution for albedo can be used

R = ω(
1

2
−

3

4
gµ0)

τ

µ0

R = (0.4565)[
1

2
−

3

4
(0.4444)(0.5)]

0.06624

0.5
= 0.0202

c) Calculate the direct and diffuse solar flux transmission at the surface for µ0 = 0.5. The
direct flux is what would be measured by a narrow field of view Sun tracking pyrheliometer.

The direct flux transmission is obtained with Beer’s law, and the unscaled optical depth must
be used:

Tdir = e−τ/µ0 = e−0.12/0.5 = 0.7866

The total transmission is obtained from the Eddington optically thin limit

Ttot = 1− R−
τ ′

µ0
(1− ω′) = 1− 0.0202− 0.0720 = 0.9078

The diffuse transmission is the difference

Tdif = Ttot − Tdir = 0.9078− 0.7866 = 0.1212

d) Calculate the surface albedo for which the atmosphere transitions from increasing the to-
tal (atmosphere + surface) albedo to decreasing the total albedo (compared with the surface
alone).

The combined atmosphere + surface albedo Rt may be obtained from the adding formula,
and we want to know for what surface albedo Rs the total albedo equals the surface albedo:

Rt = Ra +
T 2

a Rs

1− RaRs
= Rs

This is a quadratic equation in Rs

RaR
2
s − (1− T 2

a )Rs + Ra = 0

with solution

Rs =
1− T 2

a −
√

(1− T 2
a )2 − 4R2

a

2Ra

The resuting surface albedo is Rs = 0.116, above which the atmosphere reduces the albedo.
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4. (15 pts) Give a one or two sentence description of the following terms:

a) Discrete Dipole Approximation

A numerical method for calculating scattering from a nonspherical particle. It involves divid-
ing the particle up into regions (dipoles) small compared to the wavelength and computing
the interaction among all the dipoles.

b) Eigen-matrix method

A numerical method for solving the plane-parallel discrete ordinate matrix radiative transfer
equation using eigenvalues and eigenvectors. This is the method DISORT uses.

c) Nakajima-Tanaka method for accurate radiances

A method for computing accurate radiances from the delta-M scaled radiative transfer equa-
tion. The single scattered radiation is calculated exactly using the exact phase function, while
the higher order terms come from the radiative transfer solution using the delta-M Legendre
series truncated phase function.

d) Fresnel reflection

Specular refelction from a plane dielectric surface. The reflection coefficients depends on
the index of refraction and the incident angle.

e) Independent pixel approximation

A radiative transfer method for dealing with inhomogeneities in the optical depth field, say
of overcast clouds. The plane-parallel radiative transfer results are integrated over the optical
depth distribution.
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