
ATOC/ASTR 5560 Homework 4 Solutions
Due: October 29, 2001

1. a) Derive an expression relating the Rayleigh scattering volume absorption coef-
ficient for a particle size distribution to the integrated volume distribution (V , the
volume of particles per volume of air).

The Rayleigh absorption cross section is

Cabs = −
8π2r3

λ
Im

[

m2 − 1

m2 + 2

]

To get the volume absorption coefficient, we need to integrate over the particle size
distribution

β =
∫

∞

0

Cabsn(r)dr

It is clear that the volume absorption coefficient will be proportional to the third
moment of the size distribution, as is the particle volume fraction

V =
∫

∞

0

4πr3

3
n(r)dr

Putting in the absorption cross section gives

β = −
6π

λ
Im

[

m2 − 1

m2 + 2

]

∫

∞

0

4πr3

3
n(r)dr

or in terms of the volume fraction

β = −
6π

λ
Im

[

m2 − 1

m2 + 2

]

V

b) What is the volume fraction for a log-normal size distribution with Ntot = 100 cm−3,
r0 = 0.2 µm, and σ = 0.40? Calculate the volume absorption coefficient for ammo-
nium sulfate at a wavelength of 10 µm (m = 2.190 − 0.130i). Compare with your
results in lab 6.

From the lecture notes a log-normal distribution has a particle volume fraction of

V =
4π

3
Nr3

0 exp(4.5σ2)

Using the above distribution parameters gives

V =
4π

3
(100 cm−3)(0.2 µm)3 exp[4.5(0.42)] = 6.88 µm3/cm3 = 6.88× 10−12

So the aerosols are about 7 parts per trillion of air volume.
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For the index of refraction of ammonium sulfate m = 2.190 − 0.130i, m
2
−1

m2+2
=

0.56 − 0.037i. Putting the volume fraction in the Rayleigh formula derived above
gives

β =
6π

10 µm
(0.037)(6.88× 10−12) = 4.80× 10−13 µm−1 = 4.80× 10−4 km−1

This agrees exactly with the numerical integration in the lab. Aerosols generally have
negligible effects in the mid-infrared, unless they have larger mass contents, such as
after a major volcanic eruption or in a dust storm.

2. Rayleigh scattering for spherical particles is a limiting case of Mie scattering as the
size parameter x → 0. In this limit the scattered field wave coefficients an and bn are
all negligible except for a1 which is

a1 =
2i

3

m2 − 1

m2 + 2
x3 ,

using the notation of Liou (1980) or Bohren and Huffman (1983).

Use the Mie theory results to derive the following quantities for Rayleigh scattering:

a) the scattering efficiency Qsca and the extinction efficiency Qext,

The scattering efficiency from Mie theory in terms of the an and bn coefficients is:

Qsca =
2

x2

∞
∑

n=1

(2n + 1)(|an|
2 + |bn|

2)

In the Rayleigh limit this reduces to

Qsca =
(

2

x2

)

3|a1|
2 =

8

3
x4

∣

∣

∣

∣

∣

m2 − 1

m2 + 2

∣

∣

∣

∣

∣
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The extinction efficiency from Mie theory is

Qext =
2

x2

∞
∑

n=1

(2n + 1)Re(an + bn)

In the Rayleigh limit this reduces to

Qext =
2

x2
3Re(a1) =

6

x2
Re

(

2i

3

m2 − 1

m2 + 2
x3

)

= 4xRe

(

i
m2 − 1

m2 + 2

)

= −4xIm

(

m2 − 1

m2 + 2

)

b) the scattering amplitudes S1(Θ) and S2(Θ),

The Mie theory scattering amplitudes are

S1(Θ) =
∞
∑

n=1

2n + 1

n(n + 1)
[anπn(cos Θ) + bnτn(cos Θ)]
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S2(Θ) =
∞
∑

n=1

2n + 1

n(n + 1)
[bnπn(cos Θ) + anτn(cos Θ)]

where the Mie angular functions are

πn(cos Θ) =
1

sin Θ
P 1

n
(cos Θ)

τn(cos Θ) =
d

dΘ
P 1

n
(cos Θ)

For the Rayleigh limit the n = 1 angular functions are

P 1

1 (cos Θ) = sin Θ

π1(cos Θ) =
1

sin Θ
P 1

1 (cos Θ) = 1

τ1(cos Θ) =
d

dΘ
P 1

1 (cos Θ) = cos Θ

The Rayleigh limit scattering amplitudes are

S1(Θ) =
3

2
a1 = ix3

(

m2 − 1

m2 + 2

)

S2(Θ) =
3

2
a1 cos Θ = ix3

(

m2 − 1

m2 + 2

)

cos Θ

c) the phase function for intensity P11(Θ) .

The phase function for intensity is proportional to the square of the scattering ampli-
tudes

P11(Θ) =
2π

k2σsca

(

|S1|
2 + |S2|

2
)

=
2

x2Qsca

(

|S1|
2 + |S2|

2
)

Putting in the Qsca derived above and doing the algebra gves the Rayleigh phase
function

P11(Θ) =
3

4

(

1 + cos2 Θ
)

d) Consider the case of a nonabsorbing sphere in this limit. What is the extinction
efficiency derived above in this case? Is this result physical (compare with the scat-
tering)? What might be the cause of this dilemma? In this limit of Mie theory what
process does Qext really measure?

This limit of Mie theory has a certain inconsistency. This becomes apparent consid-
ering a nonabsorbing sphere, which implies that the index of refraction m has zero
imaginary part. The Mie extinction efficiency in this limit is Qext = 0. This result
is unphysical because the extinction efficiency should be equal to the scattering ef-
ficiency for no absorption. In this limit of Mie theory the extinction cross section
is really the Rayleigh absorption cross section. If there is any absorption in the par-
ticle, in the Rayleigh limit x → 0 the scattering cross section (∝ x6) is negligible
compared to the absorption cross section (∝ x3), and so the extinction is equal to
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the absorption. The cause of the dilemma is the way we have taken the limit of the
Mie theory extinction. If there is no absorption then the a1 term of the extinction
efficiency series is zero, so we need to go to higher terms to get the leading behavior
(which would go as x4).

3. The parameters needed for a two-stream radiative transfer flux calculation in a scat-
tering atmosphere are the optical depth τ , the single scattering albedo ω, and the
asymmetry parameter g. Consider the cloud and haze layer from about 50 to 65 km
in the Venusian atmosphere. The cloud and haze droplets are sulfuric acid. At a
wavelength of 550 nm the index of refraction is m = 1.45. Say the optical depth of
the cloud droplets is 25 and of the haze is 3. The asymmetry parameter of the cloud
droplets is 0.78 and of the haze particles is 0.70.

a) Write down an expression for the total optical properties of the layer (τ , ω, and g)
from these optical properties for the cloud and haze scattering.

The optical properties that are proportional to the number of particles are the ones
that can be added together, e.g. optical depth, volume scattering coefficient, etc. It
does not work to add optical properties that are ratios, such as single scattering albedo
and asymmetry parameter. Therefore the total optical properties are

τ = τc + τh

ω =
ωcτc + ωhτh

τ

g =
gcωcτc + ghωhτh

ωτ

b) Compute the total τ , ω, and g for the layer.

Since the index of refraction of the cloud and haze is real, there is no absorption and
the single scattering albedo is ωc = ωh = 1. Thus the total single scattering albedo
is ω = 1. The total optical depth is

τ = τc + τh = 25 + 3 = 28

The total asymmetry parameter is

g =
(0.78)(1)(25) + (0.70)(1)(3)

(1)(28)
= 0.771

4. You see the full moon through a uniform thin cloud and notice a well defined disk
of light around the moon. The outer part of the disk has a brownish-red tinge. The
diameter of the disk is 10 times that of the moon. What is the disk called? Why is it
colored? What is the approximate radius of particles in the cloud? Comment on the
width of the particle size distribution. What type of cloud is this?

The disk around the moon is called the corona. The corona consists of a central
aureole (or disk) of light around the moon (or sun) and perhaps one or more rings

4



further out. The corona is only a few degrees in radius (not to be confused with the
22◦ halo from scattering by hexagonal ice crystals).

The corona is due to forward scattering of the light from the moon by the water
droplets or ice crystals in the cloud. If the cloud is optically thin (say τ < 1) then
we need only to consider single scattering of light, which is described by the phase
function. The size parameter, x = 2πr/λ, for cloud droplets at visible wavelengths
is large (> 50) and so the scattering is in the geometric optics limit. This means
that there will be a strong and narrow diffraction peak in the phase function centered
on the forward scattering direction (Θ = 0). The width of the diffraction peak is
inversely related to the size parameter – nearly all the diffracted light is within Θ ≈
3/x (in radians) (Θ ≈ 170◦/x). Since most of the scattered light is in the diffraction
peak, a disk of light with the angular width of the peak is visible around the moon.

The width of the diffraction peak (and radius of the rings) depends on the size pa-
rameter, and hence the wavelength of light. The longer visible wavelengths (red, 0.7
µm) will therefore have a wider corona disk than the shorter wavelengths (blue, 0.45
µm). The inner part of the corona disk may appear somewhat bluish, while the outer
part has only the longer wavelengths, and hence will appear reddish.

A cloud contains a range of particle sizes, which smears out the corona. This blurring
tends to muddy the colors some. But since the corona is well defined the size distri-
bution must be relatively narrow. If the cloud had a wide range of droplet sizes then
the corona would be blurred by the different widths of diffraction patterns from the
droplets, but there would still be a central aureole. If the cloud optical depth is larger,
then significant multiple scattering will tend to broaden and weaken the observed
corona.

The scattering angle at the edge of the corona disk (Θ) is half the diameter of the
corona, and the diameter of the moon is 0.5◦. Therefore,

Θ ≈
170◦

x
= (0.5◦)10/2 = 2.5◦

Solving for the size parameter gives

x ≈
170◦

2.5◦
= 68

The outer part of the corona disk is red so use wavelength of λ = 0.65 µm to obtain
the particle radius from the size parameter:

r =
xλ

2π
=

68(6.5 µm)

2π
= 7.0 µm

With the small particle radius this is almost certainly a liquid cloud, probably alto-
stratus since it is optically thin.
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