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Abstract--A plane-parallel polarized radiative transfer model is described. The model is used 
to compute the radiance exiting a vertically inhomogeneous atmosphere containing randomly- 
oriented particles. Both solar and thermal sources of radiation are considered. A direct method 
of incorporating the polarized scattering information is combined with the doubling and 
adding method to produce a relatively simple formulation. Several numerical results are 
presented for verification and comparison. 

1. INTRODUCTION 

This paper deals with a numerical model that solves the polarized radiative transfer equation for a 
plane-parallel, verticaUy-inhomogeneous scattering atmosphere. The full polarization characteristics 
of randomly-oriented particles with any shape having a plane of symmetry are taken into account. 
Both thermal sources and a collimated (solar) source of radiation are included in the formulation. 
The angular field of the radiation is represented with a Fourier series in azimuth angle and 
discretization of zenith angle. The model calculates the monochromatic polarized radiation 
emerging from an atmosphere and is hence best suited for use in remote sensing applications. 

The solution method for the multiple-scattering aspect of the problem is that of doubling and 
adding. This approach computes the radiative properties of the medium rather than the radiance 
field itself so that radiances exiting the atmosphere may be easily found for many boundary 
conditions after the solution is computed. Doubling and adding is numerically stable for large 
optical depths and has the distinct advantage of conceptual simplicity. The necessity to rotate the 
polarization reference plane in the transformation from the single-scattering phase function to the 
radiative-transfer scattering matrix is the major complication of polarized models over scalar 
models, A simple direct method, heretofore inadequately described in the literature, is used for the 
transformation. The model described here is available for distribution in a well documented 
FORTRAN implementation. The model formulation and algorithm are described in Secs. 2-4, and 
example results verifying the model are presented in Secs. 5-7. 

2. DESCRIPTION OF SOLUTION METHOD 

An outline of the solution method is as follows. The polarization and angular aspects of the 
radiance field are expressed by a vector in a radiance basis. The scattering source integral in the 
radiative-transfer equation is correspondingly represented by matrix multiplication. The matrix 
differential equation is then effectively integrated with the doubling and adding method starting 
from infinitesimal layers. Since this formulation applies to the radiative properties of the medium 
(see the interaction principle below) rather than the radiation field itself, the boundary conditions 
are naturally dealt with after and separately from the integration. 

The monochromatic plane-parallel polarized radiative transfer equation for randomly-oriented 
particles is 

dI(~, #, ~b) 
- I (~,  ~, 4~) + _ _  M(g,  4 ; ~ ' , 4 ' ) I ( ~ , l ~ ' , q S ' ) d g ' d 4 ' + e ( ~ , ~ , d ~ ) ,  (1) 

/I dr = ~r~ jo d-1 
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where I is the diffuse radiance field expressed as a four-vector of Stokes parameters (/, Q, U, v), 
is the four-by-four scattering (or Mueller) matrix, tr the Stokes vector of radiation sources, o3 the 

single-scatter albedo, z the optical depth, # the cosine of the zenith angle, and ~b the azimuth angle. 
The coordinate system used here is that r increases downward and/~ is positive for downward 
directions. The sources of diffuse radiation are unpolarized thermal emission and a "pseudo-source" 
of single scattered solar radiation: 

a(/~, qS) = {l - ~5)B(T) Ii + 
F o ~  
~-~o~ exp(-r/#°)[~(/~' ~b; #o, ~bo) [i, {2) 

where B ( T )  is the Planck blackbody function, F0 the unpolarized solar flux at the top of the 
atmosphere, and (/z 0, if0) the direction of the collimated solar beam. 

The angular variation of radiation is expressed as a Fourier series in azimuth and by 
discretization in zenith angle using numerical quadrature. The model has several types of numerical 
quadrature available, including Gaussian, Lobatto, and double-Gaussian schemes. The radiance 
at a particular optical depth is thus represented by a vector in a radiance basis involving three 
components: Stokes parameters, quadrature zenith angles, and Fourier azimuth modes. The 
radiance field is separated according to hemisphere, with I + representing downward radiance 
(/~ > 0) and 1- representing upward radiance (/z < 0). The number of Stokes parameters used may 
be less than four (reducing the vector length and speeding the computations) depending on the 
particular problem being solved. The number of quadrature angles and azimuth modes is governed 
by the desired accuracy of the radiance field. If only thermal sources are considered, then the 
problem is azimuthally symmetric so that only I and Q Stokes parameters and just one Fourier 
mode need be considered. 

The key concept behind the doubling and adding method is the interaction principle, which 
expresses the linear interaction of radiation with a medium. The radiation emerging from a layer 
is related to the radiation incident upon the layer together with the radiation generated within the 
layer (Fig. l). With the formulation in terms of a radiance vector, the interaction principle is 

I~ = T÷I~ - + R + I ?  + S +, 

I,} = T-  I~ + R -  I~ + S - ,  (3) 

where T is the transmission matrix, R the reflection matrix, and S the source vector. 
When the layer in question is the whole atmosphere (together with the surface), computing R, 

T, and S amounts to solving the radiative transfer equation. On the other hand, relating R, T, and 
S for an infinitesimal layer to the single-scattering properties is simple. Thus, there are two parts 
to the solution method: first, converting the single-scattering information into a tbrm suitable for 
applying the interaction principle and, second, using the doubling and adding method to compute 
the properties of the whole atmosphere from the local (infinitesimal layer) properties. 

3. T R A N S F O R M A T I O N  OF SINGLE SCATTERING I N F O R M A T I O N  

The transformation of single-scattering information from a convenient input format (say a 
Legendre series in the scattering angle) to a form suitable for the radiative-transfer model is 
complicated by the dependence of the Q and U Stokes parameters on a reference plane. For 
single-scattering computations, the natural reference frame is the scattering plane while for a 

R~: T + S + 

r/l- 1/+ 
Fig. I. A schematic illustration of the interaction principle. The 10 + and 1{ on the left represent the incident 
radiation, and the I 0- and It + on the right represent the emergent radiation. The R, T, and S are the 
reflection, transmission, and source terms, respectively, which describe how the median interacts with the 

radiation. 
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radiative transfer calculation, the convenient reference frame is the meridional plane (defined by 
the z-axis and the direction of travel). The polarization transformation from the phase matrix P 
to the scattering matrix ~ is expressed mathematically by ~ 

M(0, ~;0 ' ,  ~b ') = a_(i 2 - 7r)P(cos O)O_(i, ). (4) 

For the (/, Q, U, v) Stokes basis, the polarization rotation matrix is 

I 1 0 0 0 
0_(i)= 0 cos2i - s i n2 i  0 (5) 

0 sin2i cos2i 0 ' 
0 0 0 1 

where the rotation angle il is the angle between scattering plane and the meridional plane containing 
the incoming ray (0', ~b'), and/2 is the angle between the scattering plane and the meridional plane 
containing the outgoing ray (0, ~b). The scattering angle (9 and the rotation angles i~ and/2 may 
be found from spherical trigonometry. 

For randomly-oriented particles with a plane of symmetry the 16 element phase matrix has only 
the following six unique elements3 

P (cosO)=  P2 P5 0 0 
0 P3 P, (6) 

0 -P4  P6 

The phase matrix for spheres has P5 = P~ and P6 = P3. 
Performing the polarization rotations to find the explicit form for the scattering matrix gives 

~ ( 0 ,  0', ¢ '  - ~ )  = 

Pt P2 cos 2il - P2 sin 2il 

P2 cos 2i 2 P5 cos 2i~ cos 2i2 - P5 sin 2i 1 cos 2i 2 
- P3 sin 2ij sin 2/2 - P3 cos 2i~ sin 2i 2 

P2 sin 2i 2 

0 

Ps cos 2i~ sin 2i2 
+ P3 sin 2it cos 2i2 

- P5 sin 2ii sin 2/2 
+ P3 cos 2il cos 2i 2 

- P4 sin 2il - P4 cos 2il 

0 

- P4 sin 2/2 

(7) 
P4 cos 2/2 

P~ 

The elements of the phase matrix Pi are input to the radiative transfer model as Legendre series 
in cos O, namely, 

Nt 
Pi(cos O) = ~ ;t/° #,(cos O). (8) 

For the radiance basis we are using, the scattering matrix • should be given in terms of the Fourier 
series in $ and $ '  and at discrete quadrature angles Bj and #~, i.e. 

M M 

~(#j, #:, ~b, ~') = ~ ~ [M~,~, cos m~b cos m'tk' + g&~, cos mq5 sin m'tk' 
r a = 0  m ' = 0  

+ ~ .  sin m~b cos m'~b' + M~, sin m~b sin m'~b ']. (9) 

Thus, a method is needed to convert from the Xl ° representation to the M,~, representation of the 
single-scattering information. In the scalar (unpolarized) radiative-transfer case, this conversion is 
accomplished by using the addition theorem of associated Legendre functions. The rotation of the 
reference frame of the polarization precludes the use of that method for finding the Fourier modes 
of the scattering matrix. Dave 3 invented a complicated series method to calculate the modes of the 
scattering matrix. A simpler method was used in this model. The method used here is to perform the 
polarization rotation explicitly in azimuth space and then Fourier transform the results to get the 
scattering matrix for each Fourier azimuth mode. This method is similar to that of Ishimaru et al, 4 
except that the rotation is performed on the Stokes parameters rather than the scattering amplitudes. 
Hansen 5 used a similar technique but in a much different formulation of the doubling method. 
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The method proceeds as follows. For each pair of quadrature angles (&, &,) and for a number 
of azimuth angle differences A4~k = q~' -- 4~, the scattering angle O is found, and the Legendre series 
are summed for the unique elements of the phase matrix. In the most general case six series must 
be summed, but depending on the number of Stokes parameters used and the type of scattering 
(Rayleigh, Mie, etc.) less series may be needed. Equation (7) is used to compute the scattering 
matrix ~ for each of the evenly spaced Aq~k. The number of Aq~, is chosen so the highest frequency, 
which depends on the number of terms in the Legendre series, is completely sampled. For each 
pair of quadrature angles, t~ is Fourier-transformed with an FFT to find the coefficients M~ and 
t ~  for the Fourier series in q~'-~b, viz. 

N r 

k = 0  

(lO) 

Since the scattering matrix only depends on the difference in azimuth between the incoming and 
outgoing angles, the Fourier modes separate ( ~  depends only on m, rather than m and m') and 

c c  s s  c c s  ~ _ _  s 
~ m m . = M m m . = ~ m ~ m m . , M m m ' = - - M m m . - - M m ~ m m  ,. (l l)  

The sine and cosine modes do mix, however, for a particular m. The decoupling of azimuth modes 
allows the modes to be solved separately, i.e., doubling and adding are performed separately for 
each mode. The computationally efficient FFT, however, produces all of the Fourier modes at once, 
so the scattering matrices for all of the modes are computed and stored before doubling and adding 
begins. 

The explicit form of the scattering matrix given in Eq. (7) shows its special symmetries that we 
use. One symmetry is that negating/~ and/~' simply results in negating the off-diagonal two-by-two 
blocks of the matrix. This symmetry means that the scattering matrix can be computed using only 
half the number of angles (say with/~ > 0). The upper left and lower right two-by-two blocks of 

are even functions in Aq~, while the upper right and lower left blocks are odd functions. This 
symmetry allows trivial calculation of the scattering matrix for ~ < A~b ~< 2g from the values of 
0 < A4~ ~< ~. The symmetry also means that the cosine matrices have off-diagonal blocks of zeros, 
and the sine matrices have diagonal blocks of zeros. Using the symmetry and also limiting the 
unpolarized sources of radiation to be even (by taking the solar azimuth to be zero), the scattering 
matrix can be reduced to a single four-by-four matrix for each azimuth mode and quadrature angle 
pair. 

This approach requires a rearranged radiance basis using the cosine azimuth modes of the I and 
Q Stokes parameters and the sine modes of the U and V parameters | = (I c, QL U s, VS). In this 
basis, the scattering matrix is expressed in terms of the Fourier components from the FFTs by 

~m(Uj ,  U/ ) = 

M~ M]2 M~3 M~41 
M~ M~2 M~s M ] 4 / .  

- M ] ,  -M]2 M~3 M~4 / 

- M~t - M~2 M~3 M~_J 

(12) 

This form of the scattering matrix is used to find the infinitesimal layer reflection and transmission 
matrices as well as the pseudo-source vector of single scattered sunlight. 

It is important to have the discretized scattering integral exactly integrate the phase matrix so 
that energy will be conserved. This means that for a given number of quadrature zenith angles there 
is a limit on the number of terms in the Legendre series representing the phase matrix. The model 
truncates the Legendre series differently according to the type of quadrature, e.g., for Gaussian 
quadrature, Lma x = 4Nu - 5 where Nu is the number of quadrature angles per hemisphere. Achieving 
phase function normalization by the use of this method can be difficult for highly-peaked phase 
functions (scattering from large size parameter particles) because of the large number of quadrature 
angles required. Other techniques such as the Delta-M method 6 are more appropriate in those 
circumstances. 
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4. APPLICATION OF DOUBLING AND ADDING METHOD 

The doubling and adding sequence of operations arc performed as matrix and vector operations 
in a radiance basis. With the above background the form of the radiance vectors can now bc made 
explicit. Since the Fourier azimuth modes are treated separately the radiance basis consists of the 
Stokes parameters at the quadrature zenith angles in a hemisphere. The structure of the radiance 

- t ( . , )  l 
I ( ~ )  ! 

I 
• ! 

f = ' |(/~j ) • ] , = 

• I 
• I 

• | (# , )  J 

vectors is 

,c] Qo 

U' 
V' 

(13) 

where the/~j arc the quadrature points of the cosine of zenith angle and the c and s subscripts refer 
to the cosine and sine azimuth modes. The length of the radiance vector is thus Nstok,, x N~. 

The scattering matrix defined above may now bc related to the local reflection and transmission 
matrices for an infinitesimal layer. In the parlance of doubling-adding this step is called 
initialization. The model described here uses the simplest method which is sometimes called 
infinitesimal generator initialization• The elements of the reflection and transmission matrices and 
the source vector for the ruth azimuth mode arc 

#: ~ w:.lM.,( +_ ~,  ~ ~:)I,,., 

i s  ± l,j = As Io',,,( + ,uj)l,, (14) 

where i is the Stokes parameter index and j is the quadrature angle index• The primed indices are 
the ones summed when carrying out matrix multiplication. The wjs are the integration weights 
corresponding to the quadrature angles #:. The initial layer optical depth As is chosen according 
to the desired accuracy (e.g., As = I0 -~ will give about five digits accuracy when using double 
precision), a~(#:) is the source term of the radiative transfer equation evaluated at the #: quadrature 
angle for the ruth Fourier azimuth mode. The thermal radiation source term is isotropic so only 
the m = 0 azimuth mode contributes. The solar pseudo-source term is found by computing the 
scattering matrix [Eq. (12)] for the incident solar direction and outgoing quadrature angles and then 
multiplying by the solar flux factor as indicated by Eq. (2). 

Writing down the interaction principle [Eq. (3)] for two adjacent layers and eliminating the 
radiances at the common interface leads to the algorithm for combining two layers. The adding 
formula computes the properties of the combined layer (T) in terms of the properties of the top 
layer (1) and the bottom layer (2), i.e., 

R~ = R~ + r ~ r  +R~ r ~ ,  

r~ = r ~ r + r ( ,  

s~ = s t  + r ~ r + ( s ~  + R,* s~), 

r + =[I -R:-R;]-', 

R7 = R-{ + Tv F-Rf T~, 

T7 = T( F - T~, 

S~ = S~ + T~ F - ( S f  + R f  S? ), 

F -  =[I --RfR+]-'• 05) 

The adding formulae may be interpreted physically in terms of multiple reflected rays, with the 
F factors being the multiple reflection factors. 

The adding method is used in a special way, called the doubling method, 7' s to quickly build up 
the radiative properties of a finite homogeneous layer from the infinitesimal initial layer. The adding 
algorithm is applied successively to combine two identical layers. Starting with a layer of thickness 
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AT, each step doubles the optical depth until after N steps the thickness is 2 N AT. The doubling 
method described so far requires that the finite layer be uniform. The solar pseudo-source, however, 
has an exponential dependence with optical depth, and it also is desirable to have the thermal 
emission vary with depth. The doubling method has been extended by Wiscombe 9 to incorporate 
sources that vary exponentially with optical depth and sources that vary linearly with optical depth. 
For layers that are purely absorbing (oh = 0) the doubling step is bypassed completely by directly 
computing the properties of the finite layer. 

The doubling algorithm computes the reflection and transmission matrices and the source vectors 
for the homogeneous layers, which are then successively combined, from the top down, with the 
adding method. The surface boundary is treating as a layer with a transmission of unity, the 
appropriate reflection, and no source term. The radiation emitted from the surface is then the 
incident radiation on the lower boundary. The model incorporates two types of surfaces: 
Lambertian and Fresnel. The radiation downwelling from the atmosphere is computed from the 
internal radiance algorithm which is easily derived from the interaction principle. Once the radiative 
properties of the whole atmosphere are found by doubling and adding many boundary conditions, 
which are Planck radiation from above and the surface properties, can be applied efficiently. The 
model computes the upwelling radiance from the top of the atmosphere and the downwelling 
radiance from the bottom of the atmosphere in the form of a Fourier series in azimuth at the 
discrete quadrature zenith angles. 

5. N U M E R I C A L  R E S U L T S  

In order to verify the accuracy of the radiative transfer model and to provide examples for 
comparison with other models, results from three types of atmospheres are presented. The first case 
is a Rayleigh atmosphere illuminated by sunlight, the second case is a Mie atmosphere in sunlight, 
and the third case is microwave transfer through a precipitating atmosphere. 

The Rayleigh atmosphere test case was compared with the book of tables by Coulson et al,~° 
Comparisons were done for three cases of varying optical depth and solar angle. The radiative 
transfer model was run with 8 out of the 16 angles in the tables and azimuth modes up to m = 2. 
A quadrature scheme that lets the angles be specified and computes the optimal integration weights 
was used. The upwelling and downwelling radiances were compared at azimuth angles of 0, 90, 
and 180 ° (U is zero at 0 and 180°). Table 1 compares the upwelling radiation for one set of 
parameters. Note: Coulson et al define Q with a sign opposite to that used here. Table 2 summarizes 
the Rayleigh case comparison. It shows the average and maximum absolute difference between the 
Coulson et al tables and the model results for the three cases. Invariably the maximum disagreement 
is for small/~ values. On average the results agree to a few places in the fourth decimal. 

6. MIE TEST CASE 

The second test case involves a comparison with results from Garcia and Siewert. ~ Their L = 13 
problem used a phase function for Mie scattering at a wavelength of 0.951 #m from a gamma 
distribution of particles with 0.2 kt m effective radius, 0.07 effective variance, and index of refraction 

Table 1. Comparison of model output with the results of Coulson et al for 
a homogeneous Rayleigh atmosphere of optical depth of 1. The upwelling 
radiance as a function of/~ = cos 0 for an azimuth of 90 ° is shown. The solar 
flux is normalized to re, the cosine of the solar zenith angle is 0.8, and the 

ground albedo is 0.25. 

Present Model 
I q u 

0.0600 0.39769 -0.05121 0.24707 
0.1600 0.40860 -0.03995 0.23359 
0.2800 0.40477 -0.02767 0.20914 
0.4000 0.39384 -0.01568 0.18112 
0.6400 0.37258 0.00779 0.12477 
0.8400 0.36158 0.02686 0.07591 
0.9600 0.35787 0.03813 0.03609 
1.0000 0.35705 0.04168 0.00000 

Coalson et M (ReL 10) 
I Q U 

0.39887 0.05099 0.24758 
0.40894 0.03988 0.23375 
0.40482 0.02766 0.20918 
0.39380 0.01570 0.18114 
0.37248 -0.00774 0.12476 
0.36147 -0.02681 0.07590 
0.35776 -0.03808 0.03609 
0.35694 -0.04181 0.00000 
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Table 2. Summary of differences between the radiative transfer model and tables by Coulson 
et al. The average and maximum absolute differences of the radiances over the eight upweUing 

zenith angles at azimuths of 0, 90, and 180 ° are listed for three sets of parameters. 

Optical Solar Ground Average Error Maximum Error 
Depth go Albedo I Q U I Q U 

1 0.8 0.25 0.00021 0.00009 0.00007 0.00130 0.00027 0.00051 
1 0.2 0.25 0.00021 0.00013 0.00002 0.00160 0.00100 0.00018 

0.1 0,1 0.25 0.00041 0.00021 0.00003 0.00175 0.00108 0.00011 

n = 1.44. Their scattering coefficients ("greek constants"), which are listed in a separate paper, ~2 
were converted to Legendre series coefficients for the four unique elements of the phase matrix 
(Table 3). 

This test case is for an optical depth of unity and a single scattering albedo of 0.99. The 
atmosphere is illuminated by a collimated beam at a zenith angle cosine ~ of 0.2 with a flux of ~ n 
relative to the horizontal. The ground surface is taken to be Lambertian with an albedo of 0.1. 
Our radiative transfer model produces radiances upwelling from the top of the atmosphere and 
downwelling from the bottom as Fourier series in azimuth at discrete quadrature zenith angles. 
Table 4 lists the upwelling radiances for a run with eight Gauss-Legendre quadrature angles per 
hemisphere and azimuth modes up to m = 8. The cosine azimuth modes are listed for I and Q while 
the sine modes are given for U and V. The initial layer thickness for the doubling algorithm was 
A'¢ = 10 -6. 

Garcia and Siewert's results are tabulated at intervals in # of 0.1 for azimuths of 0, 90, and 180 °. 
Cubic spline interpolation between the quadrature angles was used to compute the radiances at the 
tabulated intervals. The values at # = 0 and 1 were not used as they must be extrapolated from the 
quadrature angles. The radiative transfer model was run with two different number of quadrature 
angles (14 and 28) per hemisphere and with azimuth modes up to m = 9. A summary of the 
comparison between the results from the current model and Garcia and Siewert's results are 
presented in Table 5. Two types of differences were calculated: absolute and fractional. The 
absolute difference is the absolute value of the difference between the two results. The fractional 
difference is the absolute difference divided by the maximum value over the zenith angles, separately 
for each hemisphere and each azimuth angle. The summaries consist of two parts: the average 
difference and the maximum difference. The summaries include azimuths 0, 90, and 180 ° for the 
I and Q terms, but only an azimuth of 90 ° for the U and V terms. 

In general, the maximum fractional differences are from the # = 0.1 angle which is much less 
accurate than the other values. Typically, discrete--angle formulations give poorer results for lower 
#. The 28-angle case has average fractional differences of about 1 part in 2000, while the differences 
in the 14 angle case are roughly 5 times worse. Apparently given enough quadrature angles, any 
desired accuracy can be achieved. The sources of error in this comparison are the approximation 
inherent in the angular discretization scheme of the model and the interpolation between the 
quadrature angles. Obviously for most practical uses of the model, a modest number of angles will 
suffice. 

Table 

4 
5 
6 
7 
8 
9 
10 
11 

3. Legendre series coefficients for the four unique elements 
of the phase matrix for the Mie scattering test ease. 

1.00000000 
1.45529318 
1.05402631 
0.39758994 
0.11659302 
0.02387477 
0.00395010 
0.00053888 
0.00006372 
0.00000667 
0.00000063 
0.00000006 

-0.32071711 
-0.20350675 
0.24638948 
0.18605748 
0.07124848 
0.01700757 
0.00302534 
0.00043592 
0.00005326 
0.00000572 
0.00000055 
0.00000005 

0.71206342 
1.76014119 
1.06682431 
0.39651104 
0.09576412 
0.01765088 
0.00261549 
0,00032713 
0.00O03583 
0.00000351 
0.00000031 
0.00000003 

-0.01882245 
-0.04725108 
0.00894436 
0.04505815 
0.00958275 
0.00215761 
0.00029195 
0.00003502 
0.00000337 
0.00000029 
0.00000002 
0.00000000 

QgRT 46/S.-.-F 
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Table 5. Summary of differences between the radiative transfer 
model and results from Garcia and Siewert for their L = 13 Mie 
scattering problem. The model is compared for two runs having 
14 and 28 quadrature angles per hemisphere respectively. The 
summary incorporates results from radiances upwelling from the 
top and downwelling from the bottom of the atmosphere for 

nine zenith angles and three azimuth angles. 

Average 
Maximum 

Averase 
Maximum 

S~mmaty of 14 angle case 
Absolute differences 

I q U 
0.00048 0.000111 0.0000278 
0.00621 0.001190 0.0001210 

F~acfionaldifferencea 
I q U 

0.0020 0 .0032 0.0010 
0.0078 0 .0362 0.0031 

V 
0.00000032 
0.00000134 

V 
0.0037 
0.0090 

Summary of 28 angle case 
Absolute differences 

z Q U 
Average 0.00010 0.000021 0.0000083 
Maximum 0.00141 0.000176 0.0000402 

Ftacfionaldifferences 
I q U 

Average 0 .0004 0 .0005 0.0003 
Maximum 0.0013 0 .0024 0.0009 

V 
0.00000009 
0.00000050 

V 
0.0009 
0.0032 

7. MICROWAVE EX A MP LE 

The third case is different from the first two in having thermal sources of  radiation rather than a 
collimated solar source. The radiance field in a plane-parallel atmosphere with only thermal 
radiation is azimuthally symmetric and has zero U and V components. While this case does not 
include a validation, the thermal source aspects of the model have been tested against the 
unpolarized model of  Stamnes et al '3 with agreement to better than 1 part in l05. For  simplicity, 
we now consider a two layer precipitating atmosphere having an ice layer above a rain layer. Both 
layers have Marshall-Palmer ~4 (exponential) particle size distributions with a maximum diameter 
of  1.0 cm. The modeled precipitation is quite light: the rain layer has a rain-rate of  0.5 mm/h and 
the ice layer has a M-P rain rate of  2.0 mm/h. The single scattering properties of  the water and 
ice spheres are computed according to Mie theory. Absorption by oxygen, water vapor, and cloud 
liquid water is ignored. Table 6 lists the properties of  the atmosphere and Table 7 contains the 
Legendre series coefficients for the phase matrices. The modeling frequency is 85.5 GHz  which is 
the highest microwave frequency currently in use on an orbiting platform (the Special Sensor 
Microwave/Imager instrument). The surface is modeled as calm water by a Fresnel surface with 
the appropriate index of refraction (3.724-2.212i) for water at 27°C. Cosmic black body radiation 
at 2.7 K is incident from above. 

For this case, we assume the Rayleigh-Jeans approximation for the Planck function and output 
brightness temperatures rather than radiances. The model is run with eight Gaussian quadrature 
angles, one Fourier azimuth mode (m = 0), and two Stokes parameters (I  and Q). Table 8 gives 
the results for the brightness temperatures upweUing from the top and the downwelling from the 

Table 6. Properties of the two layer atmosphere for 85.5 GHz microwave case. The heights 
and temperatures refer to the layer interfaces. The rain rate specifies the Marshall-Palmer 
distribution of hydrometeors with the given indices of refraction. The extinction and single 

scattering albedo from the Mie calculation is also listed. 

Layer Height TopTemp Rain Rate Index of Extinction Albedo 
( ~ )  (Kelvin) (mm/hr) refraction (k~ -1) 

Ice 8.0 245 2.0 (1.7829, -.00344) 0.13536 0.98190 
Rain 4.0 273 0.5 (3.2781, -1.8512) 0.15224 0.38175 

0.0 300 
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Table 7. Legendre series coefficients for the three required elements of the phase 
matrices for the microwave test case. The coefficients are listed for the rain and 
ice layers. Only Pi, P2, and P3 are needed when using just two Stokes parameters 

(I and Q). 

l el 
0 1.000000 
1 0.365211 
2 0.518055 
3 0.115569 
4 0.032699 
5 0.006058 
6 0.001139 
7 0.000188 
8 0.000030 
90 0.000005 

11 
12 

Rain Layer Ice Layer 
e2 

-0.378560 0.122149 
-0.082115 1.482953 
0.353963 0.356369 
0.077666 0.067922 
0.023756 0.008445 
0.004312 0.001049 
0.000819 0.000071 
0.000133 0.000000 
0.000021 -0.000002 
0.000003 0.000000 

el /'~ /'3 
1.000000 -0.203665 0.706712 
1.305650 -0.111353 1.669173 
0.915656 0.176185 0.856457 
0.348084 0.097906 0.357357 
0.131959 0.025961 0.114952 
0.032286 0.012476 0.031836 
0.011950 0.001494 0.009323 
0.001923 0.000916 0.002046 
0.000899 0.000030 0.000561 
0.000085 0.000052 0.000112 
0.000061 -0.000004 0.000025 
0.000003 0.000003 0.000006 
0.000004 -0.000001 0.000001 

bottom of the precipitating atmosphere. For comparison the brightness temperatures upwelling 
from the surface without any atmosphere are also given. Although the atmospheric model is 
over-simplified, the results clearly show the sensitivity of 85 GHz to low rain-rates over a water 
surface. The absorption and emission of the rain layer increases the upwelling brightness 
temperature, while the scattering of the ice layer acts to decrease the brightness temperature. Both 
layers depolarize the radiation because the precipitation particles are modeled by spheres. 

8. C O N C L U D I N G  R E M A R K S  

W e  have descr ibed  a po la r i zed  p lane-para l l e l  rad ia t ive  t ransfer  mode l  for r andomly -o r i en t ed  
par t ic les  o f  a rb i t r a ry  shape.  The  mode l  is des igned for  passive a tmospher i c  r emote  sensing 
appl ica t ions ,  whether  reflection or  emiss ion based.  The  fo rmula t ion  descr ibed in this pape r  is 
pe rhaps  the s implest  o f  the m a n y  so lu t ion  me thods  to the po la r ized  radia t ive  t ransfer  p rob lem.  The 
s implici ty  is evident  bo th  in the direct  m e t h o d  o f  t r ans fo rming  the single scat ter ing in fo rma t ion  and  
the use o f  the doub l ing  and  add ing  method .  Whi le  not  as accura te  as some o ther  methods ,  doub l ing  
and  add ing  is robus t  and  provides  adequa t e  accuracy  for  prac t ica l  p rob lems  within reasonable  
runn ing  times. The  results  f rom several  example  c o m p u t a t i o n s  are shown,  which verify the accuracy  
o f  the mode l  and  p rov ide  results  for  compar i son .  A n  efficiently coded  and well documen ted  
F O R T R A N  imp lemen ta t i on  o f  the mode l  is ava i lab le  for  d is t r ibut ion .  M o r e  comple te  in fo rmat ion  
a b o u t  the mode l  is ava i lab le  in a repor t .  ~5 A closely re la ted code  that  models  po lar ized  radia t ive  
t ransfer  th rough  or ien ted  non-spher ica l  par t ic les  has  been used to c ompu te  mic rowave  t ransfer  
th rough  hor i zon ta l ly -o r i en ted  ice crystals .  ~6 

Table 8. Brightness temperature results for the microwave 
test case. The upwelling radiances from the top of the atmos- 
phere and the downwelling radiances from the bottom of the 
atmosphere and tabulated in Kelvin. For comparison, the 
upwelling brightness temperatures from the surface without an 

atmosphere are also listed. 

UpweUing DownweUing No atmosphere 
# I Q I Q I .Q 

0.09501 111.89 0.68 270.00 5.58 127.13 102.88 
0.28160 154.71 2.81 244.50 4.34 169.19 107.04 
0.45802 184.41 4.66 210.27 3.03 169.81 76.63 
0.61788 200.67 5.44 181.84 1.95 167.63 49.82 
0.75540 208.90 4.71 161.00 1.14 166.27 29.64 
0.86563 212.88 3.08 146.60 0.58 165.68 15.37 
0.94458 214.70 1.41 137.42 0.23 165.50 6.09 
0.98940 215.43 0.28 132.58 0.04 165.46 1.14 
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